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Surface Depth Estimation from Multi-view Stereo
Satellite Images with Distribution Contrast Network
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Abstract—The calculation of surface depth based on multi-
view stereo (MVS) satellite imagery is of significant importance
in fields such as military and surveying. The challenge in
extracting depth information from satellite imagery lies in the fact
that these images often exhibit similar colors, necessitating the
development of algorithms that can integrate shape and texture
information. Moreover, The application of classical CNN MVS is
limited by its inability to capture long-range terrain relationships,
which presents a bottleneck in existing surface depth estimation
algorithms. To address the above problems, we propose the
Distribution Contrast Network for Surface Depth Estimation
from Satellite Multi-View Stereo Images (DC-SatMVS), a novel
satellite MVS network. In order to learn short-range and long-
range features, we designed separate CNN and ViT branches.
To emphasize the importance of shape and texture, we propose
the Distribution Contrast Loss mechanism. This mechanism
supervises the model training based on the similarity between
the predicted depth and the ground truth depth distribution.
Experimental results demonstrate that our method achieves
state-of-the-art (SOTA) performance. We produce a remarkable
18.14% reduction in Root Mean Square Error (RMSE) compared
to the Sat-MVSF on the WHU-TLC dataset. To validate the
generalization performance of our framework, we trained and
tested it on the DTU dataset, a common MVS dataset, and achieve
SOTA results in this dataset as well. Code will be available at
https://github.com/ZYangChen/DC-SatMVS.

Index Terms—Surface depth estimation, Satellite stereo recon-
struction, Multi-view Stereo

I. INTRODUCTION

W ITHIN computer vision and remote sensing, the field
of surface depth estimation [1] from multi-view [2]

optical pictures is an important and rapidly developing field
[3]. According to [4], existing techniques for estimating sur-
face depth from satellite imagery [5] can be divided into two
main classes: one based on manual matching approaches using
commercial software, i.e., ArcGIS, Catalyst, or open-source
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Fig. 1. Motivation. 1) The local geometry of satellite imagery is
more similar. Incorporating information from longer distances to discern
the semantic patterns of the terrain proves to be a superior choice for depth
estimation. The pink circles in this figure simulate the interaction of long-
range sensory fields. 2) Scenes with similar colors may have different
depths. As can be seen from the contents of the green box, satellite imagery
has little color differentiation. Therefore, remote sensing MVS should pay
more attention to features that are not related to color. The left half of Fig. 1
is the original image, and the right half is the ground truth.

solutions [6], and the other based on deep learning-based
multi-view stereo (MVS) methods [3], [4], [7]. Traditional
manual matching approaches require the human imposition
of prior conditions, making the cost of matching prohibitive
for complex scenes. In contrast, deep learning-based solutions
[7]–[9] have demonstrated superior results in both remote
sensing and general image contexts, making these approaches
more widely applicable to research.

As a representative work in satellite MVS, RED-Net [10]
employs a recurrent Convolutional Neural Network (CNN)
[11] architecture and represents a pivotal contribution specifi-
cally designed for satellite MVS. CasMVSNet [7] decomposes
the single-cost volume into a cascaded structure of multiple
stages. It leverages the depth map from the preceding stage
to refine the depth range for each subsequent stage. UCS-
Net [9] presents a MVS reconstruction method based on
adaptive volume representation and uncertainty perception.
The aforementioned algorithm has achieved promising results
in diverse MVS scenarios [12]. Gao et al. [3] extended the
applicability of CasMVSNet [7] and UCS-Net [9] to remote
sensing imagery scenarios, demonstrating the effectiveness of
them in satellite MVS applications. In order to better adapt to
large-scale earth surface reconstruction, Gao et al. [3] proposed
the RPC Distortion Module to enhance existing satellite MVS
methods. Furthermore, Gao et al. introduced, Sat-MVSF [4],
a more refined workflow [4] aimed at reducing the Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE).

Despite the significant progress achieved by satellite MVS,
they still face bottlenecks in accurately computing depth. As
shown in Fig. 1, the existence of these bottlenecks primarily
arises from two aspects. 1) Misjudgment of depth resulting
from a focus solely on local representations. Convolutional-
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based MVS architectures struggle to capture long-range infor-
mation, which is crucial for satellite MVS. In contrast to gen-
eral MVS scenes [12], satellite images exhibit locally similar
textures, and the limited receptive field makes it challenging
for existing algorithms to accurately estimate depth by incor-
porating the similarity of long-range information. 2) Semantic
confusion due to overconsideration of color characteristics.
The loss functions commonly used in general MVS have
limited efficacy in satellite MVS scenarios. Remote sensing
images often share similar color information, rendering the
supervision of satellite MVS training based solely on RGB
values inefficient. Training satellite MVS with information
unrelated to color, such as feature distribution [13], [14], is
a more reasonable approach.

In response to the above challenges, we propose the
Distribution Contrast Network for Satellite MVS (DC-
SatMVS), a novel satellite stereo matching network. Specif-
ically, We designed separate CNN and ViT branches for the
learning of near-field and far-field features, respectively. Ad-
ditionally, we introduce the Distribution Contrast Loss (DCL),
a contrastive loss calculated based on feature distributions.
This loss function facilitates more rational supervision by
considering network representations unrelated to color.

Overall, our contributions can be summarized as follows:
• A new paradigm for satellite MVS that incorporates

global information and feature distribution considerations
is introduced.

• We propose a dual-branch feature extractor that allows
the network to capture local and global information
simultaneously.

• In order to strengthen the supervisory role of non-color
features on the network, we designed the DCL.

• Our method achieves state-of-the-art (SOTA) results in
WHU-TLC dataset, exhibits a 18.14% reduction in
RMSE compared to Sat-MVSF.

• Our design is also applicable to general MVS scenarios.
In comparison to CasMVSNet, we achieves a notable
26.35% reduction in completeness errors.

II. RELATED WORK

A. Manual Methods for Surface Depth Estimation

In the past few years, surface depth estimation of the Earth
has mainly been achieved through manual geometric methods.
Traditional manual methods can be broadly categorized into
two main types.

The first type is based on the epipolar geometry of satellite
images. An example of this approach is the Rational Poly-
nomial Camera (RPC) Stereo Processor (RSP) [15]. In this
type, stereo images are first rectified according to the RPC
[16] model, and then manual stereo matching algorithms such
as Semi-Global Matching (SGM) [17] are used to estimate
disparities. Finally, the disparity map is converted into 3D
points in the world coordinate system.

The second type involves fitting a complex RPC model into
a pinhole model for a small area and then using stereo-matched
pipelines for reconstruction. An example of this type is the
Satellite Stereo Pipeline (S2P) [18], which adjusts such stereo

matching algorithms into the COLMAP framework for surface
depth estimation of the Earth [6].

B. Learning-based Multi-view Stereo

With the development of deep learning, learning-based
MVS methods [8], [19] have demonstrated outstanding per-
formance. As representative works of learning-based MVS,
MVSNet [8], MVSNet++ [20], and P-MVSNet [21] employ a
series of 3D convolutions to regularize the cost volume. This
approach requires a significant amount of GPU memory.

To address this limitation, a mainstream approach is to use
recursive regularization methods to update depth estimations
iteratively. For example, R-MVSNet [22] processes cost vol-
umes at different depths using recursive regularization. All
these methods were originally developed for natural images.
RED-Net [10] extends the regularization method based on
Convolutional Gated Recurrent Units. Recently, SOTA meth-
ods have introduced multi-stage cost volume construction
approaches, such as CasMVSNet [7], and UCS-Net [9]. These
methods have achieved outstanding performance, even when
extended to depth estimation from satellite images, demon-
strating strong generalization capabilities.

C. Learning-based MVS for Surface Depth Estimation

To enhance the performance of MVS methods in satellite
image depth estimation, Sat-MVS [3] introduces a rigorous
RPC warping module as a plugin to existing MVS methods.
Experiments demonstrate that this plugin exhibits outstanding
performance within various MVS frameworks [7], [9], [10].

Building upon this, a universal deep learning-based frame-
work, named Sat-MVSF [4], is proposed for depth estimation
from multi-view optical satellite images of the Earth’s surface.
The framework consists of a complete processing pipeline,
including preprocessing, a Multi-view Stereo network special-
ized for satellite images (Sat-MVSNet), and post-processing.
Preprocessing involves the geometric and radiometric configu-
ration of the multi-view images, as well as their cropping. The
cropped multi-view patches are then input into Sat-MVSNet,
which performs depth feature extraction, RPC distortion, pyra-
mid cost volume construction, regularization, and regression to
obtain the height map. Error-prone matches are subsequently
filtered out, and a Digital Surface Model (DSM) is generated in
the post-processing stage. This approach achieves state-of-the-
art performance on the remote sensing image dataset WHU-
TLC [3].

However, the aforementioned method still employs the
common loss functions used in MVS, which exhibit limi-
tations in performance on remote sensing datasets. This is
because remote sensing images often have low color contrast,
and the loss functions designed for remote sensing images
should attenuate the influence of color factors on matching
judgments. Additionally, existing MVS methods still utilize
CNN architectures, which restrict the ability of MVS to learn
global information.
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Fig. 2. Illustration of our method. We propose the ViT branch and CNN branch for feature extraction. The details of this feature extractor are illustrated in the
second row. The obtained features follow the workflow of Sat-MVS (RED-Net) [3] to produce an estimated depth. Additionally, addressing the characteristic
of minor color variations in remote sensing images, we introduce the Distribution Contrast Loss (DCL). The star means our major contributions.

III. METHOD

In this section, we first describe the overall architecture of
our DC-SatMVS (Sec. III-A). Then in Sec.III-B.B we present
details of Dual-branch Extractor in DC-SatMVS. Finally, in
Sec. III-D, we explain the Distribution Contrast Loss proposed
by us.

A. General Architecture Overview

We proposed a novel satellite MVS Network (DC-SatMVS).
Inspired by Sat-MVS [3], we construct a cost volume based
on RPC warping and incorporate SOTA methods [3], [7],
[10] from the MVS domain for cost map regularization and
regression module design. Departing from the commonly
used Feature Pyramid Network (FPN) [23] and U-Net [24]
architectures in existing satellite MVS methods [3], [4], [10],
we propose a paradigm that fuses ViT and CNN to enhance
long-range information while preserving local semantics. Ad-
ditionally, considering the minimal color variation in remote
sensing images, we introduce a Loss function, i.e. DCL, that
focuses on frequency domain feature distribution. The overall
workflow is illustrated in Fig. 2.

B. Dual-branch Extractor

Existing satellite MVS methods [3], [4], [10] commonly
adopt the CNN paradigm [11] for feature extraction. How-
ever, the limited receptive field of the convolutional structure
hinders the acquisition of long-range features. Moreover, the
minimal local content variation in remote sensing images
poses a bottleneck for CNNs in extracting features from
such imagery. We contend that, for remote sensing images,
long-range information is equally crucial. This is because
long-range interactions allow the network to recognise terrain
relationships in the images, helping the network to achieve
more accurate depth estimation by discovering general terrain
patterns. Overall, CNN-based satellite MVS can only rely on

local information for estimation, resulting in limited knowl-
edge acquisition.

To complement the limited knowledge of CNNs, we propose
a novel dual-branch Extractor. It captures both long-range
semantics and short-range semantics through ViT and CNN
branches, respectively. As illustrated in Fig. 2, our feature
extractor presents a paradigm distinct from previous parallel
CNN and ViT approaches. Specifically, the ViT branch en-
codes the input image into an 8-channel feature through Patch
Embedding, mapping the feature to a higher-dimensional space
via pixel unshuffle and convolution. To further capture long-
range relationships, we construct the Transformer Block as
depicted in Fig. 3. Let n = H ×W , due to the standard ViT
design leading to O(n2) computational complexity, which is
expensive for MVS tasks, we draw inspiration from Restormer
[25] and design a matrix multiplication along the channel di-
mension. We are the first to apply this design to satellite MVS,
leveraging it for long-range information interaction. However,
this does not imply the abandonment of local information; we
also design the CNN branch. The CNN branch acquires multi-
scale features related to local details through FPN and the
Hourglass Model, inspired by [3], [10]. Finally, we concatenate
long-range features from the ViT branch and local features
from the CNN branch to get the feature map.

It must be acknowledged that combining ViT [26] and CNN
[11] is a strategy widely employed in various applications.
Incorporating the CNN component into the Multi-head Self-
attention module and the feed forward propagation module is a
common practice [27]–[29]. Our ViT branch similarly adopts
this design strategy. However, the similarity of ideas does not
mean that dual-branch extractors are exactly the same as the
methods used in this type of strategy. These strategies still have
the following problems. 1. Combined with ViT is expensive.
Attention has a square-level complexity. Let n = H ×W , the
computational complexity of the attention matrix will reach
O(n2) level. This means that the combination of ViT will
significantly increase the cost of computing. 2. Weak local
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Fig. 3. Details of Transformer Block in our Dual-branch Extractor. The symbol R means reshape. 1× 1 denotes CNN layers with kernel size set to 1.

learning ability of feedforward networks. The vast majority
of studies retain the use of MLP for forward propagation
[27]–[29]. The patch-wise learning paradigm is unfavourable
for intra-block feature learning. It is difficult to adapt to the
complex features of remotely sensed imagery.

To solve the above limitation. Our transformer module has
the following improvements. 1. Transpose the Q and K
matrices and then perform matrix multiplication. In this
way, we control the time complexity of the attention matrix
computation to O(C2). Since the number of feature channels
C << n, this approach actually achieves O(n) linear com-
plexity. A powerful attention head is achieved by interacting
only the attention of the channels. 2. Pixel-wise feature
propagation with convolution and gating. We eliminate the
linear layer + activation function paradigm and use convolution
and gating for pixel-by-pixel feature updating. In addition,
objects in remote sensing images vary significantly in scale.
A CNN branch is still designed to capture multiscale local
semantics and help the ViT branch achieve better performance.

C. Cost Volume Construction
Cost metrics of DC-SatMVS follows [8], [30]. We calculate

the variance of the element values at corresponding positions
in the feature volumes to form a single cost volume. A three-
stage cost volume is built in a cascaded manner [3], [7] based
on this single volume, allowing features to be matched from
coarse to fine. Regularization and regression of probability
volumes also follows [3].

D. Distribution Contrast Loss

Existing satellite MVS methods [3], [4] commonly align
with conventional MVS approaches [7], [8], employing
LossL1 or LossSmooth L1 for loss computation. However,
this type of loss calculation may not be the most rational
choice. The standard MVS computation inherently involves the
contrast of color information, which is not applicable to remote
sensing images with minimal color variation. To emphasize
features unrelated to color, we propose a Distribution Contrast
Loss (DCL) that focuses on the frequency domain distribution.

Following the workflow outlined in Fig. 2, we can obtain
the estimated depth d at each stage. Next, the result obtained
is shifted by a two-dimensional discrete fourier transform
f and the operation fftshift. fftshift moves the zero-
frequency component to the center of the array. This increases
the symmetry of the spectrum. In this way, we learn about
the distribution of depth information in the frequency domain.
Furthermore, we employ a normalization strategy to stabilize
the training process. Both the estimated depth and ground
truth undergo this transformation into the frequency domain,
a process expressed by Equ. 1.

df = fftshift(f(d))

dfnorm =
df −min(df )

max(df )−min(df )
(1)

where min and max refer to taking the minimum and
maximum values, respectively. In frequency space, a more
intuitive comparison of high and low frequency information
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TABLE I
QUANTITATIVE RESULTS OF THE DIFFERENT METHODS ON THE WHU-TLC DATASET. ABOVE THE CENTRAL HORIZONTAL LINE ARE MANUAL METHODS,
BELOW ARE LEARNING-BASED METHODS. THE BEST PERFORMING RESULT IS BOLD, THE SECOND BEST PERFORMING RESULT IS UNDERLINED, AND THE

PERCENTAGE SIGN INDICATES THE IMPROVEMENT OF THE BEST PERFORMANCE COMPARED TO THE SECOND BEST PERFORMANCE. THE RUNTIME OF
OUR METHOD IS OBTAINED THROUGH INFERENCE ON SINGLE NIVIDA TESLA A100 GPU.

Methods Year MAE (m)↓ RMSE (m)↓ <2.5m (%)↑ <7.5m (%)↑ Runtime↓

adapted COLMAP [6] 2019 2.227 5.291 73.35 96.00 77min27s
CATALYST 2021 3.454 7.939 52.31 82.52 3min48s
ArcGIS 2022 4.607 10.689 48.88 77.71 6min49s

CasMVSNet [7] 2020 2.031 4.351 77.39 96.53 4min02s
RED-Net [10] 2020 2.171 4.514 74.13 95.91 9min15s
UCS-Net [9] 2020 2.039 4.084 76.40 96.66 3min47s
SatMVS(RED-Net) [3] 2021 1.945 4.070 77.93 96.59 13min52s
SatMVS(CasMVSNet) [3] 2021 2.020 3.841 76.79 96.73 12min20s
SatMVS(UCS-Net) [3] 2021 2.026 3.921 77.01 96.54 13min17s
Sat-MVSF [4] 2023 1.895 3.654 64.82 80.05 5min52s

DC-SatMVS Ours 1.797 (−5.17%) 2.991 (−18.14%) 84.15 (+6.22%) 97.07 (+0.34%) 19min36s

allows us to divide this information into k groups, ensuring
that the frequency distribution within each group approximates
the frequency distribution of the ground truth. We quantify
this approximation using Equ. 4, employing the Kullback-
Leibler (KL) divergence. The KL divergence measures the
closeness of two distributions: the smaller the KL divergence,
the closer the distributions; conversely, a larger KL divergence
indicates greater dissimilarity. This characteristic allows us to
incorporate it as part of the loss function. Finally, we utilize a
piecewise function, as depicted in Equ. 5, to compress the scale
of this relationship, promoting smoother training and obtaining
the value of the DCL.

df ′ = log(SoftMax(dfnorm)) (2)

dfgt′ = SoftMax(dfgt norm) (3)

kl(df , dfgt) =

k∑
j=1

(KL(df ′, dfgt′)) (4)

LossDCL(d
f , dfgt) =

{
log(kl(df , dfgt)), kl>1,

0, kl ≤ 1
(5)

The final loss function for the DCL is obtained according
to Formula 6, where we integrate considerations for both
the differences in frequency domain distribution and specific
numerical disparities.

Loss = γ1 × LossSmoothL1(d, dgt)+

γ2 × LossDCL(d
f , dfgt) (6)

where γ1 and γ2 are factors of loss. We set γ1 = 0.8 and
γ2 = 0.2, respectively.

In other fields of study, both Zheng et al. [31] and Zhang
et al. [32] have proposed methods for calculating loss based
on distribution. Zheng et al. ’s approach [31] involves using
a larger number of samples as anchors and obtaining feature
contrasts through a VGG network [33]. However, this loss
has relatively poor interpretability and is computationally
expensive. On the other hand, the approach of Zhang et al. [32]
can lead to negative results when the distributions are close
together, which can affect the robustness of the training. Our

TABLE II
ABLATION RESULTS ON THE WHU-TLC TEST DATASET. OUR BASELINE
IS SATMVS (RED-NET) [3]. TO EMPHASIZE THE MODULES INNOVATED

IN OUR APPROACH, MODULE NAMES HIGHLIGHTED IN RED TEXT
REPRESENT OUR CONTRIBUTIONS. DBE DENOTES OUR DUAL-BRANCH

EXTRACTOR. FPN DENOTES THE FEATURE PYRAMID NETWORK [3]
STRUCTURE. SWT DENOTES THE SWIN TRANSFORMER [34] STRUCTURE.

ALL RUNTIME MEASUREMENTS PRESENTED BELOW ARE OBTAINED
THROUGH INFERENCE ON SINGLE NIVIDA TESLA A100 GPU.

No. Feature Loss MAE <2.5m <7.5m Runtime↓Extractor (m)↓ (%)↑ (%)↑

1 FPN [3] [3] 1.945 77.93 96.59 18min18s

2 FPN [3] DCL 1.928 83.68 96.86 18min04s
3 SWT [34] [3] 1.933 80.71 96.66 31min45s
4 DBE [3] 1.808 83.89 97.02 19min12s
5 SWT [34] DCL 1.882 84.02 96.96 31min32s

6 DBE DCL 1.797 84.15 97.07 19min36s

TABLE III
PARAMETER SENSITIVE ANALYSIS IN THE WEIGHT OF THE DISTRIBUTION

CONTRAST LOSS.

No. γ1 γ2 MAE (m)↓ <2.5m (%)↑ <7.5m (%)↑

1 0.9 0.1 1.812 83.87 96.62
2 0.8 0.2 1.797 84.15 97.07
3 0.7 0.3 1.804 84.61 97.05
4 0.6 0.4 1.809 83.91 96.95

DCL provides a novel perspective for this type of distribution-
based loss calculation.

IV. EXPERIMENTS

This section presents the efficacy of the DC-SatMVS. Sec.
IV-A outlines the experimental setup, while Sec. IV-B show-
cases the outcomes of the experiments. Sec. IV-C illustrates
the contribution of each module through ablation experiments.
Additionally, the approach can be applied to generic MVS
scenarios, with the corresponding evidence presented in Sec.
IV-D.
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Fig. 4. Visual comparisons on the WHU-TLC dataset. Existing methods have a tendency to incorrectly estimate the depth of an entire area as a similar value
when determining depth. In addition, they also tend to estimate the distance of the depth closer than the true value. We solve the above problems by adding
knowledge of long distances and improving the training of non-color features.

A. Experimental Setup

Due to the challenging nature of collecting MVS datasets,
the availability of existing remote sensing MVS datasets is
relatively limited. We chose to validate our approach using
the WHU-TLC [3] dataset due to its novelty. Additionally,
this dataset has a higher level of parameter openness, and
numerous approaches have been validated on it. This fa-
cilitates comparisons with a broader range of algorithms.
The framework was implemented in PyTorch and trained on
single NVIDIA A6000. The hyperparameters follow [3], in the
training phase the batch size was set to 1 and RMSprop was
chosen as the optimiser. Our network is trained for 15 epochs
with an initial learning rate of 0.001, and are downscaled by
a factor of 2 after the 10th epoch.

In order to thoroughly assess the efficacy of our proposed
method, we expand our evaluation to encompass traditional
MVS scene datasets. Specifically, we choose the widely rec-
ognized DTU dataset [12] for training and testing purposes.
Following the common practice, we train our network on
the DTU training set and evaluate it on the DTU evaluation
set while adopting the same data split and view selection as
defined in [7] for a fair comparison. The number of input
images is set to N = 5 with a resolution of 640 × 512 for the
DTU. We trained on the DTU with the Adam optimizer for
16 epochs from a start learning rate of 0.001 on 4 NVIDIA
Tesla T4 GPUs.

B. Experimental Results

To assess the effectiveness of our method in satellite MVS
scenarios, we compare our results against both manual meth-
ods and learning-based approaches. Quantitative results are
presented in Tab. I. The mean absolute error (MAE), root
mean square error (RMSE) and L1 distance error metrics were
employed. They are commonly utilised [3], [4], [10] for the
estimation of depth in remote sensing images. MAE represents
the mean absolute error between the predicted value and the
ground truth (GT), RMSE represents the sample standard
deviation of the difference between the predicted value and
the GT, and L1 distance error represents the error between the
predicted value and the GT under the permissible deviation
threshold.

Compared to the best-performing Sat-MVSF [4] in terms
of MAE and RMSE metrics, we achieve a reduction of
5.17% and 18.14%, respectively. Moreover, in comparison to
SatMVS (RED-Net) [3], [10], which exhibits the best accuracy
within 2.5 meters, our method elevates the SOTA level of
accuracy by 6.22%. Visual comparisons are depicted in Fig.
4. The red-framed areas in the figure illustrate that existing
methods tend to incorrectly estimate the depth of an entire area
as a uniform value. Moreover, these methods tend to estimate
the depth distance as being closer than the true value. From
the visualizations, it is evident that SOTA methods still exhibit
noticeable estimation errors, while our method consistently
ensures a reasonable estimation outcome.

We also perform qualitative analyses in different types
of regions. The visualisation results, as shown in Fig. 5,
illustrate the ability of DC-SatMVS to achieve clear results.
DC-SatMVS works effectively under conditions of degradation
and various land cover types.

C. Ablation Study
To validate the effectiveness of each design, we conducted

ablation experiments on the WHU-TLC dataset [3], and the
role of each module is outlined in Tab. II. No. 1 refers to
the validation results of our baseline method. In the No.2
experiment, we replaced the LossSmoothL1 used in SatMVS
(RED-Net) [3] with our proposed DCL Loss, resulting in a
7.38% improvement in accuracy within 2.5 meters. In the No.
4 experiment, we replaced the FPN used in SatMVS (RED-
Net) with our proposed Dual-branch Extractor, achieving a
7.04% reduction in MAE. Experiment No. 6 simultaneously
improved the feature extraction and loss calculation methods
of the baseline method [3], producing state-of-the-art results.

Sensitivity analysis of hyperparameters in the weighted loss
function is presented in Tab. III. γ1 = 0.8 and γ2 = 0.2 are
set for DCL, this set of parameters gives the best results.

Possibly due to device differences, we did not achieve
similar inference times to SatMVS [3] in its origin paper. This
indicates that there is still room for optimization in terms of
inference time for our method. Additionally, it is acknowl-
edged that the feature extractor may slow down inference
time, but given the relatively low real-time inference demand
for depth estimation in satellite imagery, the acceptable trade-
off for improved accuracy is justified. DCL appears only as
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Fig. 5. Visualisation of the results achieved by DC-SatMVS under different scenarios.
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TABLE IV
PERFORMANCE ON THE DTU DATASET. Ove. MEANS OVERALL PERFORMANCE, Acc. MEANS ACCURACY, AND Comp. MEANS COMPLETENESS. THE

SMALLER THE BETTER FOR EACH INDICATOR.

Methods Publish Ove.(mm)↓ Acc.(mm)↓ Comp.(mm)↓

MVSNet [8] ECCV2018 0.462 0.396 0.527
CasMVSNet [7] CVPR2020 0.355 0.296 0.406
UCS-Net [9] CVPR2020 0.344 0.338 0.349
IterMVS [35] CVPR2022 0.363 0.373 0.354
Vis-MVSNet [36] IJCV2023 0.365 0.369 0.361
DispMVS [37] AAAI2023 0.339 0.354 0.324
IGEV-MVS [38] CVPR2023 0.324 0.331 0.316
MoCha-MVS [30] CVPR2024 0.319 0.314 0.325

DC-MVS Ours 0.318 0.337 0.299

Fig. 6. Visualisation of partial scenes on the DTU dataset. We reconstructed these scenes based on the estimated depth of the point clouds.

a loss function and theoretically does not impact inference
time. The observed runtime differences are likely due to
variations in device usage, resulting in some degree of error.
We also try to replace the feature extractor with the Swin
Transformer [34] architecture. Because it is a commonly used
transformer architecturethat serves as a strong baseline for
improved ViT. The experiments in No. 3 and No. 5 show
that Swin Transformer can achieve better performance than
FPN. However, this classical transformer architecture is not
as effective as our DBE. In addition, using Swin Transformer
to extract features significantly increases the computation time
due to the existence of attention-squared level computational
complexity. In summary, we can conclude that each of our
designs proves effective for satellite Multi-view Stereo.

D. Cross-dataset Generalization

To validate the effectiveness of our design, we transferred
our approach to commonly used MVS scenes and achieved
SOTA results. The numerical results and visualizations of
the method are presented in Tab. IV and Fig. 6. Compared
to CasMVSNet [7], we respectively achieved reductions of
10.42% and 26.35% in the Overall performance and Com-
pleteness metrics, which are both error-related indicators. In
comparison to the advanced IGEV-MVS [38], our method
lowered these metrics by 1.85% and 5.38%. Even when
compared to the latest algorithm MoCha-MVS [30], our DC-
MVS still demonstrates superior performance.

We have to acknowledge that our method does not exhibit
superior performance in terms of accuracy metrics compared
to SOTA methods. This phenomenon might be attributed to
differences in features between remote sensing images and
conventional images, resulting in a certain level of absolute

position estimation offset in point clouds. However, this does
not imply that our design is unsuitable for MVS scenes.
According to the quantitative assessments in Tab. IV, our
design significantly enhances the completeness of reconstruc-
tion. The incorporation of neighboring points compensates for
absolute point cloud deviations, achieving a lower overall error
compared to MVS reconstruction methods specialized for con-
ventional scenes. This phenomenon highlights the importance
of long-range capabilities and non-color features in modeling
completeness, even though they may compromise the absolute
accuracy of the point cloud to some extent.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose the Dual-branch Extractor with
Distribution Contrast Loss, a novel method for depth estima-
tion in satellite MVS. The Dual-branch Extractor, introduced
as a novel feature extractor for satellite MVS, overcomes the
limitations of existing MVS methods in capturing long-range
relationships. Additionally, we introduce the Distribution Con-
trast Loss (DCL), a loss function focused on frequency domain
distribution, reducing the emphasis on color in conventional
MVS methods and enhancing training efficiency.

The objective of this process is to develop a more efficient
depth estimation scheme for purely visual remote sensing.
Experimental results demonstrate that our approach can be
effectively applied to the task of depth estimation in multi-view
remote sensing images, achieving state-of-the-art results on
multi-view remote sensing datasets. Furthermore, the frame-
work exhibits exemplary generalisation performance in generic
MVS scenarios. In the future, we plan to extend these designs
to other remote sensing image processing tasks.
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