Stereo Evaluation 2012


The stereo / flow benchmark consists of 194 training image pairs and 195 test image pairs, saved in loss less png format. Our evaluation server computes the average number of bad pixels for all non-occluded or occluded (=all groundtruth) pixels. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields.

Our evaluation table ranks all methods according to the number of non-occluded erroneous pixels at the specified disparity / end-point error threshold. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. For each method we show:

  • Out-Noc: Percentage of erroneous pixels in non-occluded areas
  • Out-All: Percentage of erroneous pixels in total
  • Avg-Noc: Average disparity / end-point error in non-occluded areas
  • Avg-All: Average disparity / end-point error in total
  • Density: Percentage of pixels for which ground truth has been provided by the method

Note: On 04.11.2013 we have improved the ground truth disparity maps and flow fields leading to slightly improvements for all methods. Please download the stereo/flow dataset with the improved ground truth for training again, if you have downloaded the dataset prior to 04.11.2013. Please consider reporting these new number for all future submissions. Links to last leaderboards before the updates: stereo and flow!

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Table        Error threshold        Evaluation area

Method Setting Code Out-Noc Out-All Avg-Noc Avg-All Runtime Environment
1 MoCha-Stereo 2.62 % 3.08 % 0.8 px 0.9 px 0.41 s NVIDIA Tesla A6000 (PyTorch)
2 IGEV-LFMS 2.85 % 3.53 % 0.9 px 1.0 px 0.18 s GPU @ 2.5 Ghz (C/C++)
3 RiskMin 2.87 % 3.74 % 0.9 px 1.1 px 0.20 s GPU @ 2.5 Ghz (Python)
4 IGE_Corr 2.92 % 3.59 % 0.9 px 1.0 px 0.2 s 1 core @ 2.5 Ghz (C/C++)
5 IGEV-Stereo(32) code 2.92 % 3.35 % 0.9 px 1.0 px 0.32 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
6 SG-Stereo 2.97 % 3.80 % 1.1 px 1.2 px 0.6 s 1 core @ 2.5 Ghz (Python)
7 Any-IGEV 3.03 % 3.39 % 1.0 px 1.1 px 0.32 s 1 core @ 2.5 Ghz (C/C++)
8 MC-Stereo 3.06 % 3.93 % 1.0 px 1.1 px 0.40 s 1 core @ 2.5 Ghz (Python)
9 IGEV-Stereo 3.16 % 3.57 % 1.0 px 1.1 px 0.18 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
10 EGA-Stereo code 3.18 % 4.20 % 1.0 px 1.1 px 0.41 s 1 core @ 2.5 Ghz (Python)
11 DN + GANet 3.36 % 4.63 % 1.0 px 1.2 px 1.8 s GPU @ 2.5 Ghz (C/C++)
12 DiffuVolume 3.38 % 4.19 % 1.0 px 1.2 px 0.36 s GPU @ 2.5 Ghz (Python)
13 PCWNet code 3.38 % 4.19 % 1.0 px 1.2 px 0.44 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Vision(ECCV) 2022.
14 SplitNet 3.40 % 4.15 % 1.1 px 1.2 px 0.07 s 1 core @ 2.5 Ghz (C/C++)
15 GANet+ADL 3.43 % 4.39 % 1.2 px 1.4 px 0.67 s 1 core @ 2.5 Ghz (Python)
16 RCGSNP 3.45 % 4.30 % 1.2 px 1.3 px 0.12 s GPU @ 2.5 Ghz (Python)
17 CGF-ACV code 3.45 % 4.40 % 1.0 px 1.1 px 0.24 s NVIDIA RTX 3090 (PyTorch)
18 UGNet 3.47 % 4.62 % 1.1 px 1.3 px 0.3 s GPU @ 2.5 Ghz (Python)
19 PCMAnet code 3.48 % 4.92 % 1.1 px 1.2 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
20 HD^3-Stereo code 3.49 % 4.88 % 1.0 px 1.1 px 0.14 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
21 SSMF 3.50 % 4.31 % 1.2 px 1.4 px 0.20 s 1 core @ 2.5 Ghz (Python)
22 OnestageStereo 3.53 % 4.64 % 1.1 px 1.2 px 1 s GPU @ 2.5 Ghz (C/C++)
23 LEAStereo code 3.56 % 4.32 % 1.1 px 1.2 px 0.3 s GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020.
24 GEMAStereo 3.63 % 4.66 % 1.1 px 1.2 px 0.03 s GPU @ 2.5 Ghz (Python)
25 FGDS-Net 3.63 % 4.72 % 1.1 px 1.2 px 0.3 s 1 core @ 2.5 Ghz (Python)
26 Any-RAFT 3.65 % 4.27 % 1.2 px 1.2 px 0.32 s 1 core @ 2.5 Ghz (C/C++)
27 LSE+CFNet 3.66 % 4.84 % 1.1 px 1.2 px 0.30 s 1 core @ 2.5 Ghz (Python)
28 NeXt-Stereo 3.69 % 4.31 % 1.1 px 1.2 px 0.06 s GPU @ 2.0 Ghz (Python)
29 BSDual-CNN 3.75 % 4.47 % 1.0 px 1.1 px 0.45 s GPU @ 2.5 Ghz (Python)
30 EdgeStereo-V2 3.78 % 5.06 % 1.0 px 1.2 px 0.32 s Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task learning network for stereo matching and edge detection. International Journal of Computer Vision (IJCV) 2019.
31 AutoDispNet-CSS code 3.78 % 4.47 % 1.0 px 1.1 px 0.9 s 1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity Estimation with AutoML. The IEEE International Conference on Computer Vision (ICCV) 2019.
32 ADStereo 3.78 % 4.91 % 1.1 px 1.2 px 0.05 s GPU @ 2.5 Ghz (Python)
33 PSMNet+CBAM 3.92 % 5.29 % 1.2 px 1.3 px 0.36 s NVIDIA RTX 3090 (Python)
34 ICVP code 3.94 % 4.74 % 1.2 px 1.2 px 0.17 s GPU @ 1.5 Ghz (Python)
O. Kwon and E. Zell: Image-Coupled Volume Propagation for Stereo Matching. 2023 IEEE International Conference on Image Processing (ICIP) 2023.
35 MAF-Stereo code 3.99 % 5.20 % 1.2 px 1.4 px 0.07 s GPU @ 2.5 Ghz (Python)
36 Cs-Net 4.04 % 5.47 % 1.2 px 1.3 px 0.6 s GPU @ 2.5 Ghz (Python)
37 HITNet code 4.04 % 5.34 % 1.0 px 1.2 px 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021.
38 taugr1215 4.05 % 5.30 % 1.2 px 1.3 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
39 PDSNet 4.05 % 5.87 % 1.4 px 1.6 px 0.5 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. Proceedings of the international conference on Neural Information Processing Systems (NIPS) 2018.
40 NLCA-Net v2 code 4.06 % 5.19 % 1.2 px 1.3 px 0.67 s GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in Stereo Matching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .
41 PFSMNet code 4.14 % 5.27 % 1.2 px 1.3 px 0.31 s 1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2021.
42 UCFNet code 4.15 % 4.99 % 1.1 px 1.2 px 0.21 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
43 LaC+GANet code 4.15 % 5.18 % 1.3 px 1.5 px 1.8 s 1 core @ 2.5 Ghz (C/C++)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
44 URDAD 4.18 % 5.30 % 1.5 px 1.6 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
45 ADPNet 4.20 % 5.55 % 1.3 px 1.5 px 0.06 s 1 core @ 2.5 Ghz (C/C++)
46 SegStereo code 4.22 % 5.52 % 1.1 px 1.3 px 0.6 s Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic Information for Disparity Estimation. ECCV 2018.
47 RAFT-Stereo code 4.24 % 5.08 % 1.3 px 1.3 px 0.38 s 1 core @ 2.5 Ghz (Python)
48 CFNet code 4.24 % 5.05 % 1.2 px 1.3 px 0.18 s 1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
49 High_U+A_coex 4.26 % 5.47 % 1.3 px 1.4 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
50 taugr12 4.26 % 5.56 % 1.2 px 1.3 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
51 BGNet+ 4.26 % 5.80 % 1.2 px 1.4 px 0.02 s GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
52 SCVFormer 4.27 % 5.42 % 1.4 px 1.6 px 0.09 s NVIDIA RTX 3090 (PyTorch)
53 yjlgreen 4.28 % 5.65 % 1.2 px 1.4 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
54 GANet-deep code 4.32 % 5.66 % 1.2 px 1.3 px 1.8 s GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
55 TBFE-Net 4.34 % 5.50 % 1.3 px 1.4 px 0.3 s 1 core @ 2.5 Ghz (Python)
56 ProNet 4.35 % 5.56 % 1.2 px 1.4 px 0.33 s GPU @ 2.5 Ghz (Python)
57 ERSCNet 4.35 % 6.20 % 1.2 px 1.4 px 0.28 s GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
58 DMCNet 4.38 % 5.83 % 1.3 px 1.4 px 0.27 s GPU @ 2.5 Ghz (Python)
59 AMNet 4.44 % 5.62 % 1.2 px 1.3 px 0.9 s GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks. 2019.
60 HCRNet 4.46 % 5.68 % 1.2 px 1.3 px 0.19 s GPU @ 2.5 Ghz (Python)
61 DPCTF-S 4.47 % 5.70 % 1.2 px 1.4 px 0.11 s GPU @ 2.5 Ghz (Python)
Y. Deng, J. Xiao, S. Zhou and J. Feng: Detail Preserving Coarse-to-Fine Matching for Stereo Matching and Optical Flow. IEEE Transactions on Image Processing 2021.
62 pcanet code 4.48 % 6.08 % 1.4 px 1.6 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
63 GRNet 4.51 % 5.60 % 1.2 px 1.3 px 0.19 s GPU @ 2.5 Ghz (Python)
64 LaC+GwcNet code 4.55 % 5.89 % 1.5 px 1.7 px 0.65 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
65 SCV-Stereo code 4.57 % 5.96 % 1.2 px 1.4 px 0.08 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo matching from a sparse cost volume. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
66 OptStereo 4.58 % 5.87 % 1.3 px 1.4 px 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
67 CoEx code 4.61 % 6.00 % 1.3 px 1.4 px 0.027 s RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
68 NLCA-Net-3 code 4.63 % 5.57 % 1.2 px 1.4 px 0.44 s GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
69 CAL-Net 4.66 % 5.96 % 1.5 px 1.7 px 0.44 s 4 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for Stereo Matching. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021 2021.
70 High_U+A_coex 4.68 % 5.61 % 1.3 px 1.4 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
71 VCNet 4.68 % 5.67 % 1.4 px 1.5 px 0.6 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
72 PGNet 4.70 % 6.13 % 1.3 px 1.5 px 0.7 s 1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo matching. Neurocomputing 2021.
73 Abc-Net 4.73 % 5.92 % 1.4 px 1.5 px 0.72 s 4 cores @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local attention network for stereo matching. The Visual Computer 2021.
74 DANet-Stereo 4.75 % 5.91 % 1.3 px 1.5 px 2.7 s GPU @ 2.5 Ghz (Python)
75 MDM-Stereo 4.80 % 6.09 % 1.4 px 1.6 px 0.09 s NVIDIA RTX 3090 (PyTorch)
76 SGNet 4.87 % 6.27 % 1.4 px 1.5 px 0.6 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo Matching. Proceedings of the Asian Conference on Computer Vision (ACCV) 2020.
77 CREStereo code 4.93 % 5.55 % 1.4 px 1.4 px 0.40 s GPU @ >3.5 Ghz (C/C++)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. 2022.
78 SASNet 4.96 % 6.34 % 1.3 px 1.5 px 0.21 s GPU @ >3.5 Ghz (Python)
79 SSPCVNet 4.98 % 6.55 % 1.5 px 1.7 px 0.9 s 1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost Volumes. The IEEE International Conference on Computer Vision (ICCV) 2019.
80 GCGANet-V1 5.00 % 6.02 % 1.3 px 1.5 px 0.15 s 1 core @ 2.5 Ghz (C/C++)
81 W-Stereo-a-r 5.03 % 6.49 % 1.4 px 1.5 px 0.07 s 1 core @ 2.5 Ghz (Python)
82 iResNet-i2 code 5.07 % 6.34 % 1.2 px 1.3 px 0.12 s 1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou and J. Zhang: Learning for disparity estimation through feature constancy. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018.
83 IEG-Net 5.09 % 6.56 % 1.2 px 1.4 px 0.40 s 1 core @ 2.5 Ghz (Python)
84 AAG 5.09 % 6.56 % 1.2 px 1.4 px 1.2 s 1 core @ 2.5 Ghz (C/C++)
85 DSN 5.11 % 6.65 % 1.3 px 1.5 px 0.03 s 1 core @ 2.5 Ghz (Python)
86 HSM code 5.13 % 6.77 % 1.3 px 1.6 px 0.15 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
87 OB_GWC 5.17 % 6.43 % 1.3 px 1.4 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
88 FAPEEM 5.18 % 6.65 % 1.4 px 1.6 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
89 ACVNet code 5.18 % 6.48 % 1.4 px 1.5 px 0.2 s NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for Accurate and Efficient Stereo Matching. CVPR 2022.
90 NLCA-Net code 5.19 % 6.43 % 1.3 px 1.4 px 0.6 s GPU @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
91 AcfNet code 5.20 % 6.44 % 1.8 px 1.9 px 0.48 s 1 core @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. AAAI 2020.
92 AANet+ code 5.25 % 6.66 % 1.3 px 1.4 px 0.06 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
93 CFP-Net code 5.26 % 6.90 % 1.4 px 1.6 px 0.95 s 8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching. arXiv preprint 2019.
94 MABNet_origin code 5.29 % 6.33 % 1.3 px 1.4 px 0.38 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
95 ASNet 5.35 % 6.89 % 1.5 px 1.7 px 0.17 s GPU @ >3.5 Ghz (Python)
96 GASN 5.37 % 6.95 % 1.3 px 1.5 px 0.09 s NVIDIA RTX 3090 (PyTorch)
97 ED-Net 5.39 % 7.09 % 1.4 px 1.6 px 0.24 s 1 core @ 2.5 Ghz (C/C++)
98 AFNet 5.41 % 6.48 % 1.3 px 1.4 px 0.25 s 1 core @ 2.5 Ghz (Python)
99 GDANet 5.42 % 6.82 % 1.5 px 1.7 px 0.04 s 1 core @ 2.5 Ghz (Python)
100 yjlig 5.48 % 6.95 % 1.3 px 1.5 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
101 EAC-Stereo code 5.48 % 6.95 % 1.3 px 1.5 px 0.38s 1 core @ 2.5 Ghz (Python)
102 GANet-15 code 5.49 % 7.10 % 1.3 px 1.5 px 0.36 s 1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
103 FADNet code 5.57 % 6.51 % 1.2 px 1.3 px 0.05 s Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network for Disparity Estimation. arXiv preprint arXiv:2003.10758 2020.
104 OA_COEX 5.59 % 7.09 % 1.4 px 1.6 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
105 GwcNet-gc code 5.69 % 6.70 % 1.3 px 1.4 px 0.32 s GPU @ 2.0 Ghz (Java + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network. CVPR 2019.
106 OB_GWC 5.69 % 6.70 % 1.3 px 1.4 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
107 PASNet 5.82 % 6.82 % 1.4 px 1.5 px 0.38 s GPU @ 3.5 Ghz (Python)
108 PSMNet code 5.89 % 7.29 % 1.4 px 1.6 px 0.41 s Nvidia Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network. arXiv preprint arXiv:1803.08669 2018.
109 Fast DS-CS code 6.01 % 7.23 % 1.3 px 1.5 px 0.02 s GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures. WACV 2020 (to appear).
110 Lite-CREStereo++ 6.01 % 7.05 % 1.4 px 1.5 px 1 s 1 core @ 2.5 Ghz (C/C++)
111 GAMNet 6.04 % 7.81 % 1.4 px 1.6 px 1 s 1 core @ 2.5 Ghz (Python)
112 WSMCnet code 6.08 % 7.50 % 2.1 px 2.3 px 0.39 s GPU @ Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network. Acta Optica Sinica 2019.
113 Displets code 6.11 % 7.23 % 1.9 px 2.3 px 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
114 PVStereo 6.17 % 7.06 % 2.2 px 2.3 px 0.10 s 1 core @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
115 GAANet 6.64 % 8.21 % 1.8 px 2.0 px 0.08 2080tiGPU @ 2.5 Ghz (Python)
116 RTSnet code 6.69 % 8.25 % 1.7 px 1.9 px 0.02 s 1 core @ 2.5 Ghz (Python)
H. Lee and Y. Shin: Real-Time Stereo Matching Network with High Accuracy. 2019 IEEE International Conference on Image Processing (ICIP) 2019.
117 MSDC-Net 6.72 % 8.37 % 1.8 px 2.0 px 0.6 s 1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: MSDC-Net: Multi-Scale Dense and Contextual Networks for Stereo Matching. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2019.
118 MMStereo 6.78 % 8.23 % 1.6 px 1.7 px 0.04 s Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for Robotic Manipulation in Homes. .
119 Displets v2 code 6.92 % 8.02 % 2.0 px 2.2 px 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
120 WaveletStereo 7.38 % 9.27 % 1.7 px 1.9 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients for stereo matching. arXiv: Computer Vision and Pattern Recognition 2019.
121 AANet code 7.89 % 8.91 % 1.7 px 1.8 px 0.06 s GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
122 DSN code 8.01 % 10.20 % 1.9 px 2.2 px 0.03 s 1 core @ 2.5 Ghz (C/C++)
123 MDTE4 8.12 % 10.06 % 2.2 px 2.4 px 0.03 s 1 core @ 2.5 Ghz (C/C++)
124 GC-NET 8.13 % 9.77 % 1.8 px 2.0 px 0.9 s Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the International Conference on Computer Vision (ICCV) 2017.
125 Ct-Net 8.74 % 10.46 % 3.1 px 3.4 px 0.45 s GPU @ 2.5 Ghz (Python)
126 VC-SF
This method uses optical flow information.
This method makes use of multiple (>2) views.
9.11 % 9.64 % 2.7 px 2.8 px 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, S. Roth and K. Schindler: View-Consistent 3D Scene Flow Estimation over Multiple Frames. Proceedings of European Conference on Computer Vision. Lecture Notes in, Computer Science 2014.
127 PRSM
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 9.13 % 9.75 % 2.0 px 2.1 px 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
128 OSF
This method uses optical flow information.
code 9.27 % 12.24 % 2.1 px 2.6 px 50 min 1 core @ 3.0 Ghz (Matlab + C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
129 TSNnet_Teacher 9.34 % 11.52 % 2.5 px 2.9 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
130 TSNnet_naive 10.41 % 12.89 % 2.3 px 2.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
131 RecResNet code 10.64 % 13.40 % 2.1 px 2.5 px 0.3 s GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement. In International Conference on 3D Vision (3DV) 2018.
132 PCBP-SS 10.74 % 14.75 % 2.4 px 3.9 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
133 SsSMnet 10.87 % 13.21 % 3.1 px 3.6 px 0.8 s Titan Xp
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo Matching with Self-Improving Ability. arXiv:1709.00930 2017.
134 JSOSM 10.90 % 13.35 % 2.4 px 2.8 px 105 s 8 cores @ 2.5 Ghz (C/C++)
X. Li and J. Liu: EFFICIENT STEREO MATCHING USING SEGMENT OPTIMIZATION. ICIP 2016.
135 TSNnet_student 11.24 % 13.77 % 3.1 px 3.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
136 DispNetC code 11.38 % 13.19 % 2.1 px 2.3 px 0.06 s Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.
137 FD-Fusion code 11.38 % 13.56 % 2.6 px 2.9 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations. International Conference on 3D Vision (3DV) 2019.
138 P3SNet+ code 11.66 % 14.13 % 2.1 px 2.4 px 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
139 cfusion
This method makes use of multiple (>2) views.
code 11.76 % 12.43 % 2.6 px 2.8 px 70 s GPU (Matlab + CUDA)
V. Ntouskos and F. Pirri: Confidence driven TGV fusion. arXiv preprint arXiv:1603.09302 2016.
140 SPS-StFl
This method uses optical flow information.
This method makes use of the epipolar geometry.
11.94 % 14.88 % 2.9 px 3.6 px 35 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
141 SGM-Net 12.18 % 15.62 % 3.0 px 3.8 px 67 s Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural Networks. CVPR 2017.
142 CoR code 12.21 % 15.95 % 2.7 px 4.1 px 6 s 6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial Hierarchy of Regions. CVPR 2015.
143 MABNet_tiny code 12.34 % 14.45 % 2.5 px 2.8 px 0.11 s 1 core @ 2.5 Ghz (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
144 DDS-SS 12.48 % 15.39 % 2.5 px 3.0 px 1 min 1 core @ 2.5 Ghz (Matlab + C/C++)
D. Wei, C. Liu and W. Freeman: A Data-driven Regularization Model for Stereo and Flow. 3DTV-Conference, 2014 International Conference on 2014.
145 CNNF+SGM 12.66 % 16.12 % 2.9 px 3.9 px 71 s TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
146 PCBP 12.66 % 16.57 % 2.8 px 4.4 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun: Continuous Markov Random Fields for Robust Stereo Estimation. ECCV 2012.
147 L-ResMatch code 12.92 % 16.52 % 3.7 px 5.2 px 48 s Titan X (Torch7, CUDA)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arXiv preprint arxiv:1701.00165 2016.
148 P3SNet code 13.01 % 15.71 % 2.3 px 2.8 px 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
149 SPS-St code 13.11 % 16.11 % 3.1 px 3.6 px 2 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
150 Deep Embed 13.18 % 16.70 % 2.8 px 3.8 px 3 s 1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence Embedding Model for Stereo Matching Costs. ICCV 2015.
151 PBCP 13.40 % 16.75 % 3.1 px 4.2 px 68 s Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.
152 CBMV code 13.61 % 17.01 % 3.7 px 4.4 px 250 s 6 cores@3.0Ghz(Python,C/C++,CUDA TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. 2018.
153 SMCM 13.64 % 17.93 % 2.8 px 4.8 px 1800 s Nvidia GTX 1080 (Caffe)
M. Yang, Y. Liu, Y. Cai and Z. You: Stereo matching based on classification of materials. Neurocomputing 2016.
154 MC-CNN-acrt code 13.76 % 17.17 % 3.2 px 4.1 px 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR .
155 CKDNet_naïve 13.82 % 16.53 % 2.9 px 3.4 px 0.01 s AGX @ 32TOPs python
156 MC-CNN-WS code 14.12 % 17.77 % 3.1 px 3.8 px 1.35 s 1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep metrics for stereo reconstruction. ICCV 2017.
157 StereoSLIC 14.32 % 17.59 % 2.8 px 3.6 px 2.3 s 1 core @ 3.0 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
158 PR-Sf+E
This method uses optical flow information.
14.45 % 17.28 % 3.3 px 4.0 px 200 s 4 cores @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
159 MC-CNN 14.93 % 18.22 % 3.5 px 4.3 px 100 s Nvidia GTX Titan (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural Network. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
160 pSGM 14.96 % 18.98 % 3.3 px 5.7 px 7.92 s 4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal Matching. IEEE Signal Processing Letters 2018.
161 TCD-CRF 14.98 % 19.36 % 3.3 px 6.6 px 60 s 4 cores @ 3.5 Ghz (C/C++)
S. Arjomand Bigdeli, G. Budweiser and M. Zwicker: Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering. Proc. ACPR 2015.
162 DLP 15.26 % 19.42 % 3.2 px 5.9 px 60 s 8 cores @ >3.5 Ghz (C/C++)
V. Nguyen, H. Nguyen and J. Jeon: Robust Stereo Data Cost With a Learning Strategy. IEEE Transactions on Intelligent Transportation Systems 2017.
163 Content-CNN 15.53 % 18.91 % 3.6 px 4.2 px 0.7 s Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching. CVPR 2016.
164 PR-Sceneflow
This method uses optical flow information.
15.59 % 18.28 % 3.3 px 4.0 px 150 sec 4 core @ 3.0 Ghz (Matlab - C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
165 CRD-Fusion code 15.65 % 18.41 % 2.9 px 3.5 px 0.02 s GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion. Conference on Robots and Vision 2022.
166 AAFS+ 15.76 % 17.70 % 3.0 px 3.2 px 0.01 s 1 core @ 2.5 Ghz (Python)
167 MBM 16.38 % 19.53 % 3.6 px 4.3 px 0.2 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo. IV 2015.
168 CoR-Conf code 16.59 % 20.08 % 4.0 px 5.4 px 6 s 6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial Hierarchy of Regions. CVPR 2015.
169 UHP 16.67 % 19.67 % 2.9 px 3.7 px 0.02 s GPU @ 2.5 Ghz (Python)
170 SGM-post 16.96 % 19.78 % 3.3 px 3.8 px 5 s 4 cores @ 2.5 Ghz (C/C++)
Z. Zhong: Efficient Learning based Semi-Global Stereo Matching. 2015 submitted.
171 Flow2Stereo 16.96 % 18.84 % 2.8 px 3.1 px 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
172 SepStereo 17.08 % 19.18 % 3.2 px 3.6 px 0.087s GPU @ 2.0 Ghz (Pyhton)
173 CAT 17.38 % 20.46 % 3.3 px 4.3 px 10 s 1 core @ 3.5 Ghz (C/C++)
J. Ha, J. Jeon, G. Bae, S. Jo and H. Jeong: Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence. Advances in Visual Computing 2014.
174 RBM 17.90 % 20.65 % 3.6 px 4.0 px 0.2 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.
175 AARBM 18.24 % 21.00 % 3.7 px 4.2 px 0.25 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.
176 Ensemble 18.28 % 21.95 % 4.5 px 6.9 px 135 s 2 cores @ >3.5 Ghz (Matlab)
A. Spyropoulos and P. Mordohai: Ensemble Classifier for Combining Stereo Matching Algorithms. International Conference on 3D Vision (3DV) 2015.
177 SNCC 18.36 % 21.16 % 3.7 px 4.2 px 0.11 s 1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation. DICTA 2010.
178 ATGV 18.43 % 22.49 % 3.3 px 5.3 px 6 min >8 cores @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, T. Pock and H. Bischof: Minimizing TGV-based Variational Models with Non-Convex Data terms. ICSSVM 2013.
179 CSPMS 18.59 % 22.41 % 4.5 px 6.0 px 6 s 4 cores @ 2.5 Ghz (C/C++)
J. Cho and M. Humenberger: Fast PatchMatch Stereo Matching Using Multi-Scale Cost Fusion for Automotive Applications. IV 2015.
180 AABM 18.65 % 21.45 % 3.8 px 4.4 px 0.12 s 1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces. IV 2013.
181 ALTGV 18.86 % 22.19 % 3.4 px 4.2 px 20 s GPU @ 2.5 Ghz (C/C++)
G. Kuschk and D. Cremers: Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods. ICCV Workshop on Big Data in 3D Computer Vision 2013.
182 AAFS 19.01 % 21.31 % 3.3 px 3.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. Proceedings of the Asian Conference on Computer Vision 2020.
183 ITGV 19.05 % 22.52 % 4.9 px 5.8 px 7 s 1 core @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, S. Gehrig, T. Pock and H. Bischof: Pushing the Limits of Stereo Using Variational Stereo Estimation. IV 2012.
184 PASMNet_192 code 19.29 % 23.21 % 4.5 px 5.7 px 0.06 s GPU @ 2.5 Ghz (Python)
185 DispSegNet 20.15 % 22.96 % 3.7 px 4.2 px 0.9 s GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End- to-End Learning of Disparity Estimation From Stereo Imagery. IEEE Robotics and Automation Letters 2019.
186 ARW code 20.17 % 23.92 % 5.2 px 6.8 px 4.6s 1 core @ 3.5 Ghz (MATLAB+C/C++)
S. Lee, J. Lee, J. Lim and I. Suh: Robust Stereo Matching using Adaptive Random Walk with Restart Algorithm. Image and vision computing (accepted) 2015.
187 iSGM 20.52 % 24.84 % 4.7 px 8.6 px 8 s 2 cores @ 2.5 Ghz (C/C++)
S. Hermann and R. Klette: Iterative Semi-Global Matching for Robust Driver Assistance Systems. ACCV 2012.
188 mSGM-LDE 20.96 % 25.53 % 5.5 px 9.3 px 55 s 2 cores @ 2.5 Ghz (C/C++)
V. Nguyen, D. Nguyen, S. Lee and J. Jeon: Local Density Encoding for Robust Stereo Matching. TCSVT 2014.
189 Permutation Stereo 21.96 % 24.90 % 5.0 px 5.8 px 30 s GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self- Supervised Stereo Matching Problem. 2022 19th Conference on Robots and Vision (CRV) 2022.
190 wSGM 22.07 % 25.17 % 8.0 px 9.0 px 6s 1 core @ 3.5 Ghz (C/C++)
R. Spangenberg, T. Langner and R. Rojas: Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance. CAIP 2013.
191 ELAS code 22.49 % 26.13 % 5.4 px 6.3 px 0.3 s 1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
192 S+GF (Cen) code 22.58 % 27.10 % 5.6 px 10.1 px 140 s 1 core @ 3.0 Ghz (C/C++)
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
193 linBP 23.00 % 27.42 % 5.9 px 9.6 px 1.6 min 1 core @ 3.0 Ghz (C/C++)
W. Khan, V. Suaste, D. Caudillo and R. Klette: Belief Propagation Stereo Matching Compared to iSGM on Binocular or Trinocular Video Data. IV 2013.
194 Toast2
This method uses stereo information.
23.11 % 26.12 % 5.0 px 5.7 px 0.03 s 4 cores @ 3.5 Ghz (C/C++)
B. Ranft and T. Strau\ss: Modeling Arbitrarily Oriented Slanted Planes for Efficient Stereo Vision based on Block Matching. Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on 2014.
195 rSGM code 23.20 % 26.71 % 6.7 px 7.9 px 0.2 s 4 cores @ 2.6 Ghz (C/C++)
R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas: Large Scale Semi-Global Matching on the CPU. IV 2014.
196 SGM 23.22 % 26.03 % 5.1 px 5.8 px 3.7 s 1 core @ 3.0 Ghz (C/C++)
H. Hirschmueller: Stereo Processing by Semi-Global Matching and Mutual Information. PAMI 2008.
197 SSMW 23.53 % 26.59 % 5.2 px 6.2 px 2.5 min 8 cores @ 2.5 Ghz (C/C++)
X. Li, J. Liu, G. Chen and H. Fu: Efficient Methods Using Slanted Support Windows for Slanted Surfaces. IET Computer Vision, http://ietdl.org/t/5QsTxb 2016.
198 OASM-Net 23.79 % 28.18 % 4.6 px 7.3 px 0.73 s GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
199 HSMA 24.04 % 28.43 % 5.6 px 9.3 px 44s 1 core @ 3.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: A hierarchical stereo matching algorithm based on adaptive support region aggregation method. Pattern Recognition Letters 2018.
200 LAMC-DSΜ 24.72 % 28.38 % 5.1 px 8.0 px 10.8 min 2 cores @ 2.5 Ghz (Matlab)
C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa and G. Karras: A local adaptive approach for dense stereo matching in architectural scene reconstruction. ISPRS 2013.
201 GF (Census) code 26.71 % 30.99 % 8.8 px 12.9 px 120 s 1 core @ 3.0 Ghz (C/C++)
A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. TPAMI 2013.
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
202 Deep-Raw 27.70 % 31.87 % 9.8 px 13.2 px 1 s 1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence Embedding Model for Stereo Matching Costs. ICCV 2015.
203 BSM code 27.72 % 31.35 % 7.5 px 10.3 px 2.5 min 1 core @ 3.0 Ghz (C/C++)
K. Zhang, J. Li, Y. Li, W. Hu, L. Sun and S. Yang: Binary stereo matching. Pattern Recognition (ICPR), 2012 21st International Conference on 2012.
204 IIW 28.34 % 31.82 % 8.5 px 11.7 px 5.5 s 1 core @ 2.5 Ghz (C/C++)
A. Murarka and N. Einecke: A meta-technique for increasing density of local stereo methods through iterative interpolation and warping. Canadian Conference on Computer and Robot Vision 2014.
205 GLDS code 28.48 % 31.84 % 5.8 px 7.5 px 26 s GPU @ 1.5 Ghz (C/C++)
K. Oguri and Y. Shibata: A new stereo formulation not using pixel and disparity models. 2018.
206 ADSM 28.58 % 31.54 % 8.4 px 10.6 px 125 s 1 core @ 2.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: Accurate dense stereo matching for road scenes. 2017 IEEE International Conference on Image Processing, ICIP 2017, Beijing, China, September 17-20, 2017 .
207 SM_GPTM 29.68 % 32.77 % 11.7 px 12.9 px 6.5 s 2 cores @ 2.5 Ghz (C/C++)
C. Cigla and A. Alatan: An Improved Stereo Matching Algorithm with Ground Plane and Temporal Smoothness Constraints. ECCV Workshops 2012.
208 SymST-GP 30.18 % 33.86 % 12.1 px 15.2 px 0.254 s Dual - Nvidia GTX Titan (CUDA)
R. Ralha, G. Falcao, J. Amaro, V. Mota, M. Antunes, J. Barreto and U. Nunes: Parallel refinement of slanted 3D reconstruction using dense stereo induced from symmetry. Journal of Real-Time Image Processing 2016.
209 HLSC_mesh 31.04 % 34.50 % 9.0 px 11.3 px 800 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Hadfield, K. Lebeda and R. Bowden: Stereo reconstruction using top-down cues. Computer Vision and Image Understanding 2016.
210 CrossCensus 31.35 % 34.22 % 8.0 px 10.1 px 30 s 1 core @ 2.5 Ghz (C/C++)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using Orthogonal Integral Images. Circuits and Systems for Video Technology, IEEE Transactions on 2009.
211 GCSF
This method uses optical flow information.
code 31.46 % 33.93 % 5.9 px 6.7 px 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by Growing Correspondence Seeds. CVPR 2011.
212 GCS code 32.01 % 34.42 % 6.2 px 7.0 px 2.2 s 1 core @ 2.5 Ghz (C/C++)
J. Cech and R. Sara: Efficient Sampling of Disparity Space for Fast And Accurate Matching. BenCOS 2007.
213 SDM code 32.42 % 34.83 % 7.7 px 8.6 px 1 min 1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis in complex scenes. BMVC 2003.
214 OCV-BM-post code 32.83 % 35.71 % 8.6 px 9.3 px 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library. Dr. Dobb's Journal of Software Tools 2000.
215 MSMW
This method uses stereo information.
code 33.69 % 35.97 % 9.3 px 10.0 px 3 min 4 cores @ 2.5 Ghz (C/C++)
A. Buades and G. Facciolo: On the performance of local methods for stereovision. 2013 submitted.
216 OCV-SGBM code 34.00 % 36.78 % 13.1 px 14.0 px 1.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching and mutual information. PAMI 2008.
217 CostFilter code 35.43 % 37.95 % 11.8 px 13.5 px 4 min 1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. CVPR 2011.
218 VariableCros 37.67 % 40.73 % 13.8 px 16.1 px 30 s 1 core @ 2.5 Ghz (Matlab)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using Orthogonal Integral Images. Circuits and Systems for Video Technology, IEEE Transactions on 2009.
219 GC+occ code 42.30 % 45.12 % 14.9 px 17.6 px 6 min 1 core @ 2.5 Ghz (C/C++)
V. Kolmogorov and R. Zabih: Computing Visual Correspondence with Occlusions using Graph Cuts. ICCV 2001.
220 ALE-Stereo code 80.56 % 81.22 % 24.6 px 25.4 px 50 min 1 core @ 3.0 Ghz (C/C++)
L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin and P. Torr: Joint Optimisation for Object Class Segmentation and Dense Stereo Reconstruction. BMVC 2010.
221 AVERAGE 84.41 % 85.32 % 26.2 px 28.2 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
222 MEDIAN 87.87 % 88.57 % 29.6 px 31.5 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
This table as LaTeX


Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.

Citation

When using this dataset in your research, we will be happy if you cite us:
@INPROCEEDINGS{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker