Method
Setting
Code
Out-Noc
Out-All
Avg-Noc
Avg-All
Runtime
Environment
1
HART
3.14 %
3.92 %
0.8 px
0.8 px
0.34 s
GPU @ 2.5 Ghz (Python)
2
StereoBase
code
3.29 %
4.07 %
0.8 px
0.9 px
0.29 s
GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023.
3
LoS
3.47 %
4.45 %
0.8 px
0.9 px
0.19 s
1 core @ 2.5 Ghz (Python)
4
EGLCR-Stereo
3.62 %
4.59 %
0.9 px
1.0 px
0.45 s
1 core @ 2.5 Ghz (C/C++)
5
MoCha-V2
3.65 %
4.50 %
0.9 px
0.9 px
0.31 s
NVIDIA Tesla A6000 (Python)
6
Selective-IGEV
3.79 %
4.38 %
0.9 px
1.0 px
0.24 s
1 core @ 2.5 Ghz (Python)
7
MoCha-Stereo
3.83 %
4.50 %
0.8 px
0.9 px
0.33 s
NVIDIA Tesla A6000 (PyTorch)
8
MPFV-Stereo
3.88 %
4.84 %
0.8 px
0.9 px
0.31 s
1 core @ 2.5 Ghz (Python)
9
DR Stereo
3.96 %
4.58 %
0.9 px
1.0 px
0.18 s
1 core @ 2.5 Ghz (C/C++)
10
4D-IteraStereo
4.01 %
4.61 %
0.9 px
1.0 px
0.4 s
GPU @ 2.5 Ghz (Python)
11
GeoNet
4.03 %
4.99 %
0.9 px
1.0 px
0.22 s
1 core @ 2.5 Ghz (C/C++)
12
MC-Stereo
4.10 %
5.30 %
1.0 px
1.1 px
0.40 s
1 core @ 2.5 Ghz (Python)
13
IGEV-Stereo(32)
code
4.11 %
4.76 %
0.9 px
1.0 px
0.32 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for
Stereo Matching . CVPR 2023.
14
RiskMin
4.11 %
5.51 %
0.9 px
1.1 px
0.20 s
GPU @ 2.5 Ghz (Python)
15
IGEV-ICGNet
4.12 %
5.09 %
0.9 px
1.0 px
0.18 s
GPU @ 2.5 Ghz (C/C++)
16
Any-IGEV
4.16 %
4.74 %
1.0 px
1.1 px
0.32 s
1 core @ 2.5 Ghz (C/C++)
17
IGE_Corr
4.19 %
5.16 %
0.9 px
1.0 px
0.2 s
1 core @ 2.5 Ghz (C/C++)
18
GSSNet
4.28 %
5.48 %
1.1 px
1.2 px
0.78 s
1 core @ 2.5 Ghz (Python)
19
ICGNet-abl
4.29 %
5.19 %
1.0 px
1.0 px
0.18s
1 core @ 2.5 Ghz (C/C++)
20
Selective-RAFT
4.35 %
4.68 %
1.1 px
1.2 px
0.45 s
1 core @ 2.5 Ghz (Python)
21
IGEV-Stereo
4.35 %
5.00 %
1.0 px
1.1 px
0.18 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for
Stereo Matching . CVPR 2023.
22
PCMAnet
4.57 %
6.29 %
1.0 px
1.1 px
0.27 s
1 core @ 2.5 Ghz (C/C++)
23
DualNet-kd*
4.60 %
5.73 %
1.0 px
1.1 px
0.3 s
1 core @ 2.5 Ghz (C/C++)
24
RCGSNP
4.68 %
5.84 %
1.2 px
1.3 px
0.12 s
GPU @ 2.5 Ghz (Python)
25
EGA-Stereo
code
4.80 %
6.22 %
1.0 px
1.1 px
0.41 s
1 core @ 2.5 Ghz (Python)
26
GANet+ADL
4.84 %
6.10 %
1.2 px
1.4 px
0.67 s
1 core @ 2.5 Ghz (Python)
27
Any-RAFT
4.85 %
5.71 %
1.2 px
1.2 px
0.32 s
1 core @ 2.5 Ghz (C/C++)
28
PCWNet-SCE
4.97 %
6.28 %
1.1 px
1.3 px
0.44 s
1 core @ 2.5 Ghz (C/C++)
29
OnestageStereo
4.99 %
6.50 %
1.1 px
1.2 px
1 s
GPU @ 2.5 Ghz (C/C++)
30
HD^3-Stereo
code
4.99 %
6.77 %
1.0 px
1.1 px
0.14 s
NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition
for Match Density Estimation . CVPR 2019.
31
PCWNet
code
4.99 %
6.20 %
1.0 px
1.2 px
0.44 s
1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping
Cost Volume for Stereo Matching . European Conference on Computer
Vision(ECCV) 2022.
32
SSMF
5.00 %
6.19 %
1.2 px
1.4 px
0.20 s
1 core @ 2.5 Ghz (Python)
33
CGF-ACV
code
5.02 %
6.32 %
1.0 px
1.1 px
0.24 s
NVIDIA RTX 3090 (PyTorch)
34
MVACVNet
5.02 %
6.32 %
1.0 px
1.1 px
0.01 s
GPU @ 2.5 Ghz (Python)
35
DiffuVolume
5.03 %
6.23 %
1.0 px
1.2 px
0.36 s
GPU @ 2.5 Ghz (Python)
36
DN+ACVNet
5.05 %
6.53 %
1.2 px
1.4 px
0.24 s
1 core @ 2.5 Ghz (C/C++)
37
HSJ_STEREO
5.07 %
6.33 %
1.0 px
1.1 px
0.1 s
1 core @ 2.5 Ghz (C/C++)
38
WiCRI_STEREO
5.07 %
6.33 %
1.0 px
1.1 px
1 s
1 core @ 2.5 Ghz (C/C++)
39
PCMAnet
code
5.10 %
6.98 %
1.1 px
1.2 px
0.27 s
1 core @ 2.5 Ghz (C/C++)
40
BSDual-CNN
5.14 %
6.19 %
1.0 px
1.1 px
0.45 s
GPU @ 2.5 Ghz (Python)
41
UGNet
5.16 %
6.78 %
1.1 px
1.3 px
0.3 s
GPU @ 2.5 Ghz (Python)
42
NeXt-Stereo
5.22 %
6.16 %
1.1 px
1.2 px
0.06 s
GPU @ 2.0 Ghz (Python)
43
FGDS-Net
5.29 %
6.81 %
1.1 px
1.2 px
0.3 s
1 core @ 2.5 Ghz (Python)
44
GEMAStereo
5.34 %
6.83 %
1.1 px
1.2 px
0.03 s
GPU @ 2.5 Ghz (Python)
45
LEAStereo
code
5.35 %
6.50 %
1.1 px
1.2 px
0.3 s
GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search
for Deep Stereo Matching . Advances in Neural Information
Processing Systems 2020.
46
RAFT-Stereo
code
5.40 %
6.48 %
1.3 px
1.3 px
0.38 s
1 core @ 2.5 Ghz (Python)
47
ICVP
code
5.43 %
6.54 %
1.2 px
1.2 px
0.17 s
GPU @ 1.5 Ghz (Python)
O. Kwon and E. Zell: Image-Coupled Volume Propagation for
Stereo Matching . 2023 IEEE International Conference on
Image Processing (ICIP) 2023.
48
ADStereo
5.54 %
7.03 %
1.1 px
1.2 px
0.05 s
GPU @ 2.5 Ghz (Python)
49
MAF-Stereo
code
5.60 %
7.17 %
1.2 px
1.4 px
0.07 s
GPU @ 2.5 Ghz (Python)
50
MDA
5.64 %
7.22 %
1.2 px
1.4 px
0.32s
1 core @ 2.5 Ghz (Python)
51
DVANet
5.68 %
7.48 %
1.2 px
1.3 px
0.1 s
NVIDIA 3090 (PyTorch)
52
AutoDispNet-CSS
code
5.69 %
6.68 %
1.0 px
1.1 px
0.9 s
1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity
Estimation with AutoML . The IEEE International
Conference on Computer Vision (ICCV) 2019.
53
PSMNet+CBAM
5.81 %
7.56 %
1.2 px
1.3 px
0.36 s
NVIDIA RTX 3090 (Python)
54
URDAD
5.81 %
7.27 %
1.5 px
1.6 px
0.35 s
1 core @ 2.5 Ghz (C/C++)
55
UCFNet
code
5.83 %
7.12 %
1.1 px
1.2 px
0.21 s
1 core @ 2.5 Ghz (C/C++)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
56
SCVFormer
5.83 %
7.42 %
1.4 px
1.6 px
0.09 s
NVIDIA RTX 3090 (PyTorch)
57
PFSMNet
code
5.83 %
7.39 %
1.2 px
1.3 px
0.31 s
1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network . IEEE Transactions on Intelligent
Transportation Systems 2021.
58
EdgeStereo-V2
5.84 %
7.51 %
1.0 px
1.2 px
0.32 s
Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task
learning network for stereo matching and edge
detection . International Journal of Computer
Vision (IJCV) 2019.
59
HITNet
code
5.91 %
7.54 %
1.0 px
1.2 px
0.02 s
GPU @ 2.5 Ghz (Python + C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile
Refinement Network for Real-time Stereo
Matching . CVPR 2021.
60
ADPNet
5.93 %
7.74 %
1.3 px
1.5 px
0.06 s
1 core @ 2.5 Ghz (C/C++)
61
CFNet
code
5.96 %
7.29 %
1.2 px
1.3 px
0.18 s
1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for
Robust Stereo Matching . IEEE Conference on Computer Vision
and
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
62
HCRNet
6.01 %
7.68 %
1.2 px
1.3 px
0.19 s
GPU @ 2.5 Ghz (Python)
63
LaC+GANet
code
6.02 %
7.34 %
1.3 px
1.5 px
1.8 s
1 core @ 2.5 Ghz (C/C++)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
64
taugr1215
6.05 %
7.76 %
1.2 px
1.3 px
0.35 s
1 core @ 2.5 Ghz (C/C++)
65
DPCTF-S
6.12 %
7.81 %
1.2 px
1.4 px
0.11 s
GPU @ 2.5 Ghz (Python)
Y. Deng, J. Xiao, S. Zhou and J. Feng: Detail Preserving Coarse-to-Fine Matching
for Stereo Matching and Optical Flow . IEEE Transactions on Image Processing 2021.
66
ProNet
6.15 %
7.72 %
1.2 px
1.4 px
0.33 s
GPU @ 2.5 Ghz (Python)
67
NLCA-Net v2
code
6.17 %
7.65 %
1.2 px
1.3 px
0.67 s
GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in
Stereo Matching . IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS .
68
TBFE-Net
6.19 %
7.80 %
1.3 px
1.4 px
0.3 s
1 core @ 2.5 Ghz (Python)
69
GANet-deep
code
6.22 %
7.92 %
1.2 px
1.3 px
1.8 s
GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
70
taugr12
6.25 %
8.02 %
1.2 px
1.3 px
0.35 s
1 core @ 2.5 Ghz (C/C++)
71
LaC+GwcNet
code
6.26 %
8.02 %
1.5 px
1.7 px
0.65 s
GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
72
GINet
6.26 %
7.91 %
1.3 px
1.4 px
0.25 s
2 cores @ 2.5 Ghz (Python)
73
CREStereo
code
6.27 %
7.27 %
1.4 px
1.4 px
0.40 s
GPU @ >3.5 Ghz (C/C++)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via
Cascaded Recurrent Network with Adaptive
Correlation . 2022.
74
VCNet
6.31 %
7.67 %
1.4 px
1.5 px
0.6 s
1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
75
pcanet
code
6.33 %
8.50 %
1.4 px
1.6 px
0.27 s
1 core @ 2.5 Ghz (C/C++)
76
NMRF-Stereo
6.35 %
8.11 %
1.4 px
1.6 px
0.09 s
NVIDIA RTX 3090 (PyTorch)
77
SegStereo
code
6.35 %
8.06 %
1.1 px
1.3 px
0.6 s
Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic
Information for Disparity Estimation . ECCV 2018.
78
FusionStereo
6.39 %
8.10 %
1.2 px
1.3 px
16 s
1 core @ 2.5 Ghz (Python)
79
CAL-Net
6.40 %
8.17 %
1.5 px
1.7 px
0.44 s
4 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for
Stereo Matching . IEEE International Conference on
Acoustics, Speech and Signal Processing,
ICASSP 2021, Toronto, ON, Canada,
June 6-11, 2021 2021.
80
BGNet+
6.44 %
8.41 %
1.2 px
1.4 px
0.02 s
GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching
Network . Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2021.
81
OptStereo
6.46 %
8.12 %
1.3 px
1.4 px
0.10 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for
end-to-end self-supervised stereo matching . IEEE Robotics and Automation Letters 2021.
82
PDSNet
6.50 %
8.70 %
1.4 px
1.6 px
0.5 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward
applications-friendly deep stereo matching . Proceedings of the international conference
on Neural Information Processing Systems (NIPS) 2018.
83
AMNet
6.55 %
8.16 %
1.2 px
1.3 px
0.9 s
GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo
Disparity Estimation Networks . 2019.
84
DANet-Stereo
6.59 %
8.18 %
1.3 px
1.5 px
2.7 s
GPU @ 2.5 Ghz (Python)
85
SCV-Stereo
code
6.59 %
8.34 %
1.2 px
1.4 px
0.08 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo
matching from a sparse cost volume . 2021 IEEE International Conference
on Image Processing (ICIP) 2021.
86
DMCNet
6.62 %
8.45 %
1.3 px
1.4 px
0.27 s
GPU @ 2.5 Ghz (Python)
87
ERSCNet
6.63 %
9.04 %
1.2 px
1.4 px
0.28 s
GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet . Proceedings of the European
Conference on Computer Vision (ECCV) 2020.
88
PGNet
6.67 %
8.54 %
1.3 px
1.5 px
0.7 s
1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo
matching . Neurocomputing 2021.
89
Abc-Net
6.80 %
8.40 %
1.4 px
1.5 px
0.72 s
4 cores @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local
attention network for stereo matching . The Visual Computer 2021.
90
CoEx
code
6.83 %
8.63 %
1.3 px
1.4 px
0.027 s
RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation . 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
91
NLCA-Net-3
code
6.85 %
8.19 %
1.2 px
1.4 px
0.44 s
GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
92
UAIStereo
6.90 %
8.63 %
1.3 px
1.4 px
0.06 s
GPU @ 3.5 Ghz (Python)
93
GCGANet-V1
6.92 %
8.31 %
1.3 px
1.5 px
0.15 s
1 core @ 2.5 Ghz (C/C++)
94
AcfNet
code
6.93 %
8.52 %
1.8 px
1.9 px
0.48 s
1 core @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep
Stereo Matching . AAAI 2020.
95
SASNet
6.98 %
8.83 %
1.3 px
1.5 px
0.21 s
GPU @ >3.5 Ghz (Python)
96
IEG-Net
7.01 %
8.85 %
1.2 px
1.4 px
0.40 s
1 core @ 2.5 Ghz (Python)
97
AAG
7.01 %
8.85 %
1.2 px
1.4 px
1.2 s
1 core @ 2.5 Ghz (C/C++)
98
SGNet
7.02 %
8.89 %
1.4 px
1.5 px
0.6 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo
Matching . Proceedings of the Asian Conference
on Computer Vision (ACCV) 2020.
99
ACVNet
code
7.03 %
8.67 %
1.4 px
1.5 px
0.2 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for
Accurate and Efficient Stereo Matching . CVPR 2022.
100
ICGNet-gwc
7.07 %
8.85 %
1.3 px
1.4 px
0.32 s
GPU @ 2.5 Ghz (Python)
101
NLCA-Net
code
7.20 %
9.00 %
1.3 px
1.4 px
0.6 s
GPU @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
102
AANet+
code
7.22 %
9.10 %
1.3 px
1.4 px
0.06 s
NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
103
GDANet
7.29 %
9.15 %
1.5 px
1.7 px
0.04 s
1 core @ 2.5 Ghz (Python)
104
ASNet
7.32 %
9.15 %
1.5 px
1.7 px
0.17 s
GPU @ >3.5 Ghz (Python)
105
GASN
7.33 %
9.35 %
1.3 px
1.5 px
0.09 s
NVIDIA RTX 3090 (PyTorch)
106
HSM
code
7.38 %
9.40 %
1.3 px
1.6 px
0.15 s
Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on
High-
Resolution Images . The IEEE Conference on Computer
Vision
and Pattern Recognition (CVPR) 2019.
107
W-Stereo-a-r
7.39 %
9.24 %
1.4 px
1.5 px
0.07 s
1 core @ 2.5 Ghz (Python)
108
iResNet-i2
code
7.40 %
9.09 %
1.2 px
1.3 px
0.12 s
1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou and J. Zhang: Learning for disparity estimation through feature constancy . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018.
109
yjlig
7.48 %
9.37 %
1.3 px
1.5 px
0.35 s
1 core @ 2.5 Ghz (C/C++)
110
EAC-Stereo
code
7.48 %
9.37 %
1.3 px
1.5 px
0.38s
1 core @ 2.5 Ghz (Python)
111
AFNet
7.50 %
9.04 %
1.3 px
1.4 px
0.25 s
1 core @ 2.5 Ghz (Python)
112
CFP-Net
code
7.52 %
9.58 %
1.4 px
1.6 px
0.95 s
8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching . arXiv preprint 2019.
113
SSPCVNet
7.56 %
9.43 %
1.5 px
1.7 px
0.9 s
1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost
Volumes . The IEEE International Conference on
Computer Vision (ICCV) 2019.
114
MABNet_origin
code
7.57 %
9.07 %
1.3 px
1.4 px
0.38 s
Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
115
PASNet
7.75 %
9.22 %
1.4 px
1.5 px
0.38 s
GPU @ 3.5 Ghz (Python)
116
GwcNet-gc
code
7.80 %
9.28 %
1.3 px
1.4 px
0.32 s
GPU @ 2.0 Ghz (Java + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network . CVPR 2019.
117
FADNet
code
7.85 %
9.17 %
1.2 px
1.3 px
0.05 s
Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network
for Disparity Estimation . arXiv preprint arXiv:2003.10758 2020.
118
GANet-15
code
7.87 %
9.85 %
1.3 px
1.5 px
0.36 s
1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
119
PSMNet
code
8.36 %
10.18 %
1.4 px
1.6 px
0.41 s
Nvidia Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network . arXiv preprint arXiv:1803.08669 2018.
120
Displets
code
8.40 %
9.89 %
1.9 px
2.3 px
265 s
>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge . Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
121
WSMCnet
code
8.50 %
10.27 %
2.1 px
2.3 px
0.39 s
GPU @ Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network . Acta Optica Sinica 2019.
122
PVStereo
8.54 %
9.96 %
2.2 px
2.3 px
0.10 s
1 core @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module
for end-to-end self-supervised stereo matching . IEEE Robotics and Automation
Letters 2021.
123
Fast DS-CS
code
8.88 %
10.40 %
1.3 px
1.5 px
0.02 s
GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional
Processing of Cost Signatures . WACV 2020 (to appear).
124
GAANet
8.98 %
11.01 %
1.8 px
2.0 px
0.08
2080tiGPU @ 2.5 Ghz (Python)
125
Displets v2
code
8.99 %
10.41 %
2.0 px
2.2 px
265 s
>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities
using Object
Knowledge . Conference on Computer Vision and
Pattern Recognition
(CVPR) 2015.
126
MSDC-Net
9.16 %
11.27 %
1.8 px
2.0 px
0.6 s
1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: MSDC-Net: Multi-Scale Dense and
Contextual Networks for Stereo Matching . 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit
and Conference (APSIPA ASC) 2019.
127
MMStereo
9.27 %
11.17 %
1.6 px
1.7 px
0.04 s
Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for
Robotic Manipulation in Homes . .
128
DualNet-kd
9.40 %
11.25 %
1.7 px
1.9 px
0.3 s
1 core @ 2.5 Ghz (C/C++)
129
RTSnet
code
9.54 %
11.49 %
1.7 px
1.9 px
0.02 s
1 core @ 2.5 Ghz (Python)
H. Lee and Y. Shin: Real-Time Stereo Matching Network with High
Accuracy . 2019 IEEE International Conference on Image
Processing (ICIP) 2019.
130
WaveletStereo
9.84 %
12.17 %
1.7 px
1.9 px
0.27 s
1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients
for stereo matching . arXiv: Computer Vision and Pattern
Recognition 2019.
131
AANet
code
10.51 %
11.97 %
1.7 px
1.8 px
0.06 s
GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
132
GC-NET
10.80 %
12.80 %
1.8 px
2.0 px
0.9 s
Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for
Deep Stereo Regression . Proceedings of the International Conference on
Computer Vision (ICCV) 2017.
133
MDTE4
11.13 %
13.31 %
2.2 px
2.4 px
0.03 s
1 core @ 2.5 Ghz (C/C++)
134
VC-SF
11.58 %
12.29 %
2.7 px
2.8 px
300 s
1 core @ 2.5 Ghz (C/C++)
C. Vogel, S. Roth and K. Schindler: View-Consistent 3D Scene Flow
Estimation over Multiple Frames . Proceedings of European
Conference on Computer Vision. Lecture
Notes in, Computer Science 2014.
135
PRSM
code
11.91 %
12.87 %
2.0 px
2.1 px
300 s
1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a
Piecewise Rigid Scene Model . ijcv 2015.
136
TSNnet_Teacher
12.06 %
14.38 %
2.5 px
2.9 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
137
OSF
code
12.18 %
15.35 %
2.1 px
2.6 px
50 min
1 core @ 3.0 Ghz (Matlab + C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
138
TSNnet_naive
13.95 %
16.67 %
2.3 px
2.8 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
139
SsSMnet
14.02 %
16.59 %
3.1 px
3.6 px
0.8 s
Titan Xp
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo
Matching with Self-Improving Ability . arXiv:1709.00930 2017.
140
JSOSM
14.16 %
16.89 %
2.4 px
2.8 px
105 s
8 cores @ 2.5 Ghz (C/C++)
X. Li and J. Liu: EFFICIENT STEREO MATCHING USING SEGMENT
OPTIMIZATION . ICIP 2016.
141
RecResNet
code
14.25 %
17.32 %
2.1 px
2.5 px
0.3 s
GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN
Architecture for Disparity Map Enhancement . In International Conference on 3D
Vision (3DV) 2018.
142
PCBP-SS
14.26 %
18.33 %
2.4 px
3.9 px
5 min
4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation . CVPR 2013.
143
TSNnet_student
14.33 %
17.03 %
3.1 px
3.8 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
144
FD-Fusion
code
14.64 %
17.15 %
2.6 px
2.9 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations . International Conference on 3D Vision (3DV) 2019.
145
SPS-StFl
14.74 %
18.00 %
2.9 px
3.6 px
35 s
1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo
and Flow Estimation . ECCV 2014.
146
CoR
code
15.30 %
19.15 %
2.7 px
4.1 px
6 s
6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial
Hierarchy of Regions . CVPR 2015.
147
cfusion
code
15.31 %
16.20 %
2.6 px
2.8 px
70 s
GPU (Matlab + CUDA)
V. Ntouskos and F. Pirri: Confidence driven TGV fusion . arXiv preprint arXiv:1603.09302 2016.
148
SGM-Net
15.31 %
18.97 %
3.0 px
3.8 px
67 s
Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural
Networks . CVPR 2017.
149
P3SNet+
code
15.85 %
18.50 %
2.1 px
2.4 px
0.01 s
GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
150
L-ResMatch
code
15.94 %
19.71 %
3.7 px
5.2 px
48 s
Titan X (Torch7, CUDA)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway
Networks and Reflective Loss . arXiv preprint arxiv:1701.00165 2016.
151
DispNetC
code
16.04 %
18.15 %
2.1 px
2.3 px
0.06 s
Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train
Convolutional Networks for Disparity, Optical
Flow, and Scene Flow Estimation . CVPR 2016.
152
SPS-St
code
16.05 %
19.34 %
3.1 px
3.6 px
2 s
1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and
Flow Estimation . ECCV 2014.
153
CNNF+SGM
16.22 %
19.87 %
2.9 px
3.9 px
71 s
TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New
Features for Effective Dense Matching . IEEE Transactions on Image
Processing 2018.
154
DDS-SS
16.23 %
19.39 %
2.5 px
3.0 px
1 min
1 core @ 2.5 Ghz (Matlab + C/C++)
D. Wei, C. Liu and W. Freeman: A Data-driven Regularization Model for Stereo and Flow . 3DTV-Conference, 2014 International Conference on 2014.
155
PCBP
16.28 %
20.22 %
2.8 px
4.4 px
5 min
4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun: Continuous Markov Random Fields for Robust Stereo
Estimation . ECCV 2012.
156
MABNet_tiny
code
16.50 %
18.83 %
2.5 px
2.8 px
0.11 s
1 core @ 2.5 Ghz (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
157
PBCP
16.78 %
20.29 %
3.1 px
4.2 px
68 s
Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for
Dense Disparity Map . British Machine Vision Conference
(BMVC) 2016.
158
MC-CNN-acrt
code
17.09 %
20.70 %
3.2 px
4.1 px
67 s
Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches . Submitted to JMLR .
159
CBMV
code
17.10 %
20.70 %
3.7 px
4.4 px
250 s
6 cores@3.0Ghz(Python,C/C++,CUDA TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching
Volume for Disparity Estimation . 2018.
160
Deep Embed
17.14 %
20.78 %
2.8 px
3.8 px
3 s
1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence
Embedding Model for Stereo Matching Costs . ICCV 2015.
161
SMCM
17.46 %
21.74 %
2.8 px
4.8 px
1800 s
Nvidia GTX 1080 (Caffe)
M. Yang, Y. Liu, Y. Cai and Z. You: Stereo matching based on classification of
materials . Neurocomputing 2016.
162
P3SNet
code
17.48 %
20.35 %
2.3 px
2.8 px
0.01 s
GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
163
MC-CNN-WS
code
17.70 %
21.54 %
3.1 px
3.8 px
1.35 s
1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep
metrics for stereo reconstruction . ICCV 2017.
164
PR-Sf+E
17.85 %
20.82 %
3.3 px
4.0 px
200 s
4 cores @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow . International Conference on Computer
Vision (ICCV) 2013.
165
StereoSLIC
18.22 %
21.60 %
2.8 px
3.6 px
2.3 s
1 core @ 3.0 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation . CVPR 2013.
166
MC-CNN
18.45 %
21.96 %
3.5 px
4.3 px
100 s
Nvidia GTX Titan (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a
Convolutional Neural Network . Conference on Computer Vision and
Pattern Recognition (CVPR) 2015.
167
Content-CNN
18.81 %
22.38 %
3.6 px
4.2 px
0.7 s
Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching . CVPR 2016.
168
pSGM
18.87 %
22.87 %
3.3 px
5.7 px
7.92 s
4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal
Matching . IEEE Signal Processing Letters 2018.
169
PR-Sceneflow
19.22 %
22.07 %
3.3 px
4.0 px
150 sec
4 core @ 3.0 Ghz (Matlab - C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow . International Conference on Computer
Vision (ICCV) 2013.
170
TCD-CRF
19.22 %
23.53 %
3.3 px
6.6 px
60 s
4 cores @ 3.5 Ghz (C/C++)
S. Arjomand Bigdeli, G. Budweiser and M. Zwicker: Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering . Proc. ACPR 2015.
171
CoR-Conf
code
19.38 %
23.00 %
4.0 px
5.4 px
6 s
6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial
Hierarchy of Regions . CVPR 2015.
172
DLP
19.67 %
23.72 %
3.2 px
5.9 px
60 s
8 cores @ >3.5 Ghz (C/C++)
V. Nguyen, H. Nguyen and J. Jeon: Robust Stereo Data Cost With a Learning
Strategy . IEEE Transactions on Intelligent
Transportation Systems 2017.
173
CRD-Fusion
code
19.84 %
22.68 %
2.9 px
3.5 px
0.02 s
GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo
Matching with Confidence Guided Raw Disparity
Fusion . Conference on Robots and Vision 2022.
174
MBM
20.37 %
23.63 %
3.6 px
4.3 px
0.2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo . IV 2015.
175
SepStereo
20.91 %
23.24 %
3.2 px
3.6 px
0.087s
GPU @ 2.0 Ghz (Pyhton)
176
UHP
21.28 %
24.34 %
2.9 px
3.7 px
0.02 s
GPU @ 2.5 Ghz (Python)
177
AAFS+
21.32 %
23.51 %
3.0 px
3.2 px
0.01 s
1 core @ 2.5 Ghz (Python)
178
Flow2Stereo
21.35 %
23.51 %
2.8 px
3.1 px
0.05 s
GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised
Learning of Optical Flow and Stereo Matching . CVPR 2020.
179
SGM-post
21.71 %
24.70 %
3.3 px
3.8 px
5 s
4 cores @ 2.5 Ghz (C/C++)
Z. Zhong: Efficient Learning based Semi-Global Stereo
Matching . 2015 submitted.
180
CAT
21.72 %
24.88 %
3.3 px
4.3 px
10 s
1 core @ 3.5 Ghz (C/C++)
J. Ha, J. Jeon, G. Bae, S. Jo and H. Jeong: Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence . Advances in Visual Computing 2014.
181
CSPMS
22.41 %
26.24 %
4.5 px
6.0 px
6 s
4 cores @ 2.5 Ghz (C/C++)
J. Cho and M. Humenberger: Fast PatchMatch Stereo
Matching Using Multi-Scale Cost Fusion for
Automotive Applications . IV 2015.
182
ITGV
22.43 %
26.01 %
4.9 px
5.8 px
7 s
1 core @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, S. Gehrig, T. Pock and H. Bischof: Pushing the Limits of Stereo Using Variational Stereo Estimation . IV 2012.
183
RBM
22.51 %
25.39 %
3.6 px
4.0 px
0.2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
184
ATGV
22.85 %
26.81 %
3.3 px
5.3 px
6 min
>8 cores @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, T. Pock and H. Bischof: Minimizing TGV-based Variational Models with Non-Convex Data terms . ICSSVM 2013.
185
AARBM
22.86 %
25.76 %
3.7 px
4.2 px
0.25 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
186
PASMNet_192
code
23.02 %
26.94 %
4.5 px
5.7 px
0.06 s
GPU @ 2.5 Ghz (Python)
187
SNCC
23.03 %
25.94 %
3.7 px
4.2 px
0.11 s
1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation . DICTA 2010.
188
Ensemble
23.04 %
26.70 %
4.5 px
6.9 px
135 s
2 cores @ >3.5 Ghz (Matlab)
A. Spyropoulos and P. Mordohai: Ensemble Classifier for Combining Stereo
Matching Algorithms . International Conference on 3D Vision
(3DV) 2015.
189
AABM
23.33 %
26.25 %
3.8 px
4.4 px
0.12 s
1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces . IV 2013.
190
ALTGV
23.47 %
26.85 %
3.4 px
4.2 px
20 s
GPU @ 2.5 Ghz (C/C++)
G. Kuschk and D. Cremers: Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods . ICCV Workshop on Big Data in 3D Computer Vision 2013.
191
ARW
code
24.54 %
28.29 %
5.2 px
6.8 px
4.6s
1 core @ 3.5 Ghz (MATLAB+C/C++)
S. Lee, J. Lee, J. Lim and I. Suh: Robust Stereo Matching using Adaptive Random
Walk with Restart Algorithm . Image and vision computing (accepted) 2015.
192
iSGM
24.67 %
28.86 %
4.7 px
8.6 px
8 s
2 cores @ 2.5 Ghz (C/C++)
S. Hermann and R. Klette: Iterative Semi-Global Matching for Robust Driver
Assistance Systems . ACCV 2012.
193
AAFS
24.86 %
27.26 %
3.3 px
3.8 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for
Real-time Stereo Matching on Edge Devices . Proceedings of the Asian Conference
on Computer Vision 2020.
194
mSGM-LDE
24.97 %
29.33 %
5.5 px
9.3 px
55 s
2 cores @ 2.5 Ghz (C/C++)
V. Nguyen, D. Nguyen, S. Lee and J. Jeon: Local Density Encoding for Robust Stereo
Matching . TCSVT 2014.
195
DispSegNet
25.00 %
27.94 %
3.7 px
4.2 px
0.9 s
GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End-
to-End Learning of Disparity Estimation From
Stereo Imagery . IEEE Robotics and Automation Letters 2019.
196
wSGM
25.99 %
29.17 %
8.0 px
9.0 px
6s
1 core @ 3.5 Ghz (C/C++)
R. Spangenberg, T. Langner and R. Rojas: Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance . CAIP 2013.
197
ELAS
code
26.75 %
30.41 %
5.4 px
6.3 px
0.3 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching . ACCV 2010.
198
Permutation Stereo
26.86 %
29.87 %
5.0 px
5.8 px
30 s
GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self-
Supervised Stereo Matching Problem . 2022 19th Conference on Robots and
Vision (CRV) 2022.
199
S+GF (Cen)
code
27.10 %
31.36 %
5.6 px
10.1 px
140 s
1 core @ 3.0 Ghz (C/C++)
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation
for Stereo Matching . CVPR 2014.
200
SGM
27.39 %
30.31 %
5.1 px
5.8 px
3.7 s
1 core @ 3.0 Ghz (C/C++)
H. Hirschmueller: Stereo Processing by Semi-Global Matching and Mutual Information . PAMI 2008.
201
rSGM
code
27.46 %
30.98 %
6.7 px
7.9 px
0.2 s
4 cores @ 2.6 Ghz (C/C++)
R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas: Large Scale Semi-Global Matching on the CPU . IV 2014.
202
linBP
27.77 %
31.94 %
5.9 px
9.6 px
1.6 min
1 core @ 3.0 Ghz (C/C++)
W. Khan, V. Suaste, D. Caudillo and R. Klette: Belief Propagation Stereo Matching
Compared to iSGM on Binocular or Trinocular Video
Data . IV 2013.
203
SSMW
27.84 %
30.96 %
5.2 px
6.2 px
2.5 min
8 cores @ 2.5 Ghz (C/C++)
X. Li, J. Liu, G. Chen and H. Fu: Efficient Methods Using Slanted
Support Windows for Slanted Surfaces . IET Computer Vision,
http://ietdl.org/t/5QsTxb 2016.
204
Toast2
27.85 %
30.88 %
5.0 px
5.7 px
0.03 s
4 cores @ 3.5 Ghz (C/C++)
B. Ranft and T. Strau\ss: Modeling Arbitrarily Oriented Slanted
Planes for Efficient Stereo Vision based on Block
Matching . Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference
on 2014.
205
OASM-Net
28.28 %
32.45 %
4.6 px
7.3 px
0.73 s
GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning . Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
206
HSMA
28.76 %
32.90 %
5.6 px
9.3 px
44s
1 core @ 3.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: A hierarchical stereo matching
algorithm
based on adaptive support region aggregation
method . Pattern Recognition Letters 2018.
207
LAMC-DSΜ
29.18 %
32.73 %
5.1 px
8.0 px
10.8 min
2 cores @ 2.5 Ghz (Matlab)
C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa and G. Karras: A local adaptive approach for dense stereo matching in architectural scene reconstruction . ISPRS 2013.
208
GF (Census)
code
30.81 %
34.85 %
8.8 px
12.9 px
120 s
1 core @ 3.0 Ghz (C/C++)
A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering
for Visual Correspondence and Beyond . TPAMI 2013. K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation
for Stereo Matching . CVPR 2014.
209
Deep-Raw
31.55 %
35.52 %
9.8 px
13.2 px
1 s
1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence
Embedding Model for Stereo Matching Costs . ICCV 2015.
210
BSM
code
32.50 %
35.96 %
7.5 px
10.3 px
2.5 min
1 core @ 3.0 Ghz (C/C++)
K. Zhang, J. Li, Y. Li, W. Hu, L. Sun and S. Yang: Binary stereo matching . Pattern Recognition (ICPR), 2012 21st
International Conference on 2012.
211
ADSM
32.69 %
35.60 %
8.4 px
10.6 px
125 s
1 core @ 2.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: Accurate dense stereo matching
for road scenes . 2017 IEEE International
Conference on Image Processing, ICIP 2017,
Beijing, China, September 17-20,
2017 .
212
IIW
33.04 %
36.39 %
8.5 px
11.7 px
5.5 s
1 core @ 2.5 Ghz (C/C++)
A. Murarka and N. Einecke: A meta-technique for increasing density of local stereo methods through iterative interpolation and warping . Canadian Conference on Computer and Robot Vision 2014.
213
GLDS
code
33.15 %
36.36 %
5.8 px
7.5 px
26 s
GPU @ 1.5 Ghz (C/C++)
K. Oguri and Y. Shibata: A new stereo formulation not using pixel and disparity
models . 2018.
214
SymST-GP
33.68 %
37.24 %
12.1 px
15.2 px
0.254 s
Dual - Nvidia GTX Titan (CUDA)
R. Ralha, G. Falcao, J. Amaro, V. Mota, M. Antunes, J. Barreto and U. Nunes: Parallel refinement of slanted 3D
reconstruction using dense stereo induced from
symmetry . Journal of Real-Time Image
Processing 2016.
215
SM_GPTM
33.78 %
36.81 %
11.7 px
12.9 px
6.5 s
2 cores @ 2.5 Ghz (C/C++)
C. Cigla and A. Alatan: An Improved Stereo Matching Algorithm with Ground Plane
and Temporal Smoothness Constraints . ECCV Workshops 2012.
216
HLSC_mesh
35.58 %
38.92 %
9.0 px
11.3 px
800 s
1 core @ 2.5 Ghz (Matlab + C/C++)
S. Hadfield, K. Lebeda and R. Bowden: Stereo reconstruction using top-down
cues . Computer Vision and Image
Understanding 2016.
217
CrossCensus
35.97 %
38.80 %
8.0 px
10.1 px
30 s
1 core @ 2.5 Ghz (C/C++)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using
Orthogonal Integral Images . Circuits and Systems for Video
Technology, IEEE Transactions on 2009.
218
OCV-BM-post
code
37.03 %
39.85 %
8.6 px
9.3 px
0.1 s
1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library . Dr. Dobb's Journal of Software Tools 2000.
219
GCSF
code
37.08 %
39.53 %
5.9 px
6.7 px
2.4 s
1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by Growing
Correspondence Seeds . CVPR 2011.
220
SDM
code
37.23 %
39.63 %
7.7 px
8.6 px
1 min
1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis
in complex scenes . BMVC 2003.
221
OCV-SGBM
code
37.45 %
40.21 %
13.1 px
14.0 px
1.1 s
1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching
and mutual information . PAMI 2008.
222
MSMW
code
37.60 %
39.98 %
9.3 px
10.0 px
3 min
4 cores @ 2.5 Ghz (C/C++)
A. Buades and G. Facciolo: On the performance of local methods for stereovision . 2013 submitted.
223
GCS
code
37.63 %
40.05 %
6.2 px
7.0 px
2.2 s
1 core @ 2.5 Ghz (C/C++)
J. Cech and R. Sara: Efficient Sampling of Disparity Space
for Fast And Accurate Matching . BenCOS 2007.
224
CostFilter
code
39.41 %
41.95 %
11.8 px
13.5 px
4 min
1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual
Correspondence and Beyond . CVPR 2011.
225
VariableCros
42.39 %
45.26 %
13.8 px
16.1 px
30 s
1 core @ 2.5 Ghz (Matlab)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using
Orthogonal Integral Images . Circuits and Systems for Video
Technology,
IEEE Transactions on 2009.
226
GC+occ
code
46.25 %
48.96 %
14.9 px
17.6 px
6 min
1 core @ 2.5 Ghz (C/C++)
V. Kolmogorov and R. Zabih: Computing Visual Correspondence with
Occlusions using Graph Cuts . ICCV 2001.
227
ALE-Stereo
code
83.80 %
84.37 %
24.6 px
25.4 px
50 min
1 core @ 3.0 Ghz (C/C++)
L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin and P. Torr: Joint Optimisation for Object Class
Segmentation and Dense Stereo Reconstruction . BMVC 2010.
228
AVERAGE
88.11 %
88.80 %
26.2 px
28.2 px
0.01 s
1 core @ 2.5 Ghz (C/C++)
229
MEDIAN
90.79 %
91.33 %
29.6 px
31.5 px
0.01 s
1 core @ 2.5 Ghz (C/C++)