Stereo Evaluation 2012


The stereo / flow benchmark consists of 194 training image pairs and 195 test image pairs, saved in loss less png format. Our evaluation server computes the average number of bad pixels for all non-occluded or occluded (=all groundtruth) pixels. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing disparity maps and flow fields.

Our evaluation table ranks all methods according to the number of non-occluded erroneous pixels at the specified disparity / end-point error threshold. All methods providing less than 100 % density have been interpolated using simple background interpolation as explained in the corresponding header file in the development kit. For each method we show:

  • Out-Noc: Percentage of erroneous pixels in non-occluded areas
  • Out-All: Percentage of erroneous pixels in total
  • Avg-Noc: Average disparity / end-point error in non-occluded areas
  • Avg-All: Average disparity / end-point error in total
  • Density: Percentage of pixels for which ground truth has been provided by the method

Note: On 04.11.2013 we have improved the ground truth disparity maps and flow fields leading to slightly improvements for all methods. Please download the stereo/flow dataset with the improved ground truth for training again, if you have downloaded the dataset prior to 04.11.2013. Please consider reporting these new number for all future submissions. Links to last leaderboards before the updates: stereo and flow!

Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Motion stereo: Method uses epipolar geometry for computing optical flow
  • Additional training data: Use of additional data sources for training (see details)

Table        Error threshold        Evaluation area

Method Setting Code Out-Noc Out-All Avg-Noc Avg-All Runtime Environment
1 HART 3.14 % 3.92 % 0.8 px 0.8 px 0.34 s GPU @ 2.5 Ghz (Python)
2 StereoBase code 3.29 % 4.07 % 0.8 px 0.9 px 0.29 s GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for Stereo Matching and Strong Baseline. arXiv preprint arXiv:2312.00343 2023.
3 LoS 3.47 % 4.45 % 0.8 px 0.9 px 0.19 s 1 core @ 2.5 Ghz (Python)
4 EGLCR-Stereo 3.62 % 4.59 % 0.9 px 1.0 px 0.45 s 1 core @ 2.5 Ghz (C/C++)
5 MoCha-V2 3.65 % 4.50 % 0.9 px 0.9 px 0.31 s NVIDIA Tesla A6000 (Python)
6 Selective-IGEV 3.79 % 4.38 % 0.9 px 1.0 px 0.24 s 1 core @ 2.5 Ghz (Python)
7 MoCha-Stereo 3.83 % 4.50 % 0.8 px 0.9 px 0.33 s NVIDIA Tesla A6000 (PyTorch)
8 MPFV-Stereo 3.88 % 4.84 % 0.8 px 0.9 px 0.31 s 1 core @ 2.5 Ghz (Python)
9 DR Stereo 3.96 % 4.58 % 0.9 px 1.0 px 0.18 s 1 core @ 2.5 Ghz (C/C++)
10 4D-IteraStereo 4.01 % 4.61 % 0.9 px 1.0 px 0.4 s GPU @ 2.5 Ghz (Python)
11 GeoNet 4.03 % 4.99 % 0.9 px 1.0 px 0.22 s 1 core @ 2.5 Ghz (C/C++)
12 MC-Stereo 4.10 % 5.30 % 1.0 px 1.1 px 0.40 s 1 core @ 2.5 Ghz (Python)
13 IGEV-Stereo(32) code 4.11 % 4.76 % 0.9 px 1.0 px 0.32 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
14 RiskMin 4.11 % 5.51 % 0.9 px 1.1 px 0.20 s GPU @ 2.5 Ghz (Python)
15 IGEV-ICGNet 4.12 % 5.09 % 0.9 px 1.0 px 0.18 s GPU @ 2.5 Ghz (C/C++)
16 Any-IGEV 4.16 % 4.74 % 1.0 px 1.1 px 0.32 s 1 core @ 2.5 Ghz (C/C++)
17 IGE_Corr 4.19 % 5.16 % 0.9 px 1.0 px 0.2 s 1 core @ 2.5 Ghz (C/C++)
18 GSSNet 4.28 % 5.48 % 1.1 px 1.2 px 0.78 s 1 core @ 2.5 Ghz (Python)
19 ICGNet-abl 4.29 % 5.19 % 1.0 px 1.0 px 0.18s 1 core @ 2.5 Ghz (C/C++)
20 Selective-RAFT 4.35 % 4.68 % 1.1 px 1.2 px 0.45 s 1 core @ 2.5 Ghz (Python)
21 IGEV-Stereo 4.35 % 5.00 % 1.0 px 1.1 px 0.18 s NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for Stereo Matching. CVPR 2023.
22 PCMAnet 4.57 % 6.29 % 1.0 px 1.1 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
23 DualNet-kd* 4.60 % 5.73 % 1.0 px 1.1 px 0.3 s 1 core @ 2.5 Ghz (C/C++)
24 RCGSNP 4.68 % 5.84 % 1.2 px 1.3 px 0.12 s GPU @ 2.5 Ghz (Python)
25 EGA-Stereo code 4.80 % 6.22 % 1.0 px 1.1 px 0.41 s 1 core @ 2.5 Ghz (Python)
26 GANet+ADL 4.84 % 6.10 % 1.2 px 1.4 px 0.67 s 1 core @ 2.5 Ghz (Python)
27 Any-RAFT 4.85 % 5.71 % 1.2 px 1.2 px 0.32 s 1 core @ 2.5 Ghz (C/C++)
28 PCWNet-SCE 4.97 % 6.28 % 1.1 px 1.3 px 0.44 s 1 core @ 2.5 Ghz (C/C++)
29 OnestageStereo 4.99 % 6.50 % 1.1 px 1.2 px 1 s GPU @ 2.5 Ghz (C/C++)
30 HD^3-Stereo code 4.99 % 6.77 % 1.0 px 1.1 px 0.14 s NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition for Match Density Estimation. CVPR 2019.
31 PCWNet code 4.99 % 6.20 % 1.0 px 1.2 px 0.44 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching. European Conference on Computer Vision(ECCV) 2022.
32 SSMF 5.00 % 6.19 % 1.2 px 1.4 px 0.20 s 1 core @ 2.5 Ghz (Python)
33 CGF-ACV code 5.02 % 6.32 % 1.0 px 1.1 px 0.24 s NVIDIA RTX 3090 (PyTorch)
34 MVACVNet 5.02 % 6.32 % 1.0 px 1.1 px 0.01 s GPU @ 2.5 Ghz (Python)
35 DiffuVolume 5.03 % 6.23 % 1.0 px 1.2 px 0.36 s GPU @ 2.5 Ghz (Python)
36 DN+ACVNet 5.05 % 6.53 % 1.2 px 1.4 px 0.24 s 1 core @ 2.5 Ghz (C/C++)
37 HSJ_STEREO 5.07 % 6.33 % 1.0 px 1.1 px 0.1 s 1 core @ 2.5 Ghz (C/C++)
38 WiCRI_STEREO 5.07 % 6.33 % 1.0 px 1.1 px 1 s 1 core @ 2.5 Ghz (C/C++)
39 PCMAnet code 5.10 % 6.98 % 1.1 px 1.2 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
40 BSDual-CNN 5.14 % 6.19 % 1.0 px 1.1 px 0.45 s GPU @ 2.5 Ghz (Python)
41 UGNet 5.16 % 6.78 % 1.1 px 1.3 px 0.3 s GPU @ 2.5 Ghz (Python)
42 NeXt-Stereo 5.22 % 6.16 % 1.1 px 1.2 px 0.06 s GPU @ 2.0 Ghz (Python)
43 FGDS-Net 5.29 % 6.81 % 1.1 px 1.2 px 0.3 s 1 core @ 2.5 Ghz (Python)
44 GEMAStereo 5.34 % 6.83 % 1.1 px 1.2 px 0.03 s GPU @ 2.5 Ghz (Python)
45 LEAStereo code 5.35 % 6.50 % 1.1 px 1.2 px 0.3 s GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search for Deep Stereo Matching. Advances in Neural Information Processing Systems 2020.
46 RAFT-Stereo code 5.40 % 6.48 % 1.3 px 1.3 px 0.38 s 1 core @ 2.5 Ghz (Python)
47 ICVP code 5.43 % 6.54 % 1.2 px 1.2 px 0.17 s GPU @ 1.5 Ghz (Python)
O. Kwon and E. Zell: Image-Coupled Volume Propagation for Stereo Matching. 2023 IEEE International Conference on Image Processing (ICIP) 2023.
48 ADStereo 5.54 % 7.03 % 1.1 px 1.2 px 0.05 s GPU @ 2.5 Ghz (Python)
49 MAF-Stereo code 5.60 % 7.17 % 1.2 px 1.4 px 0.07 s GPU @ 2.5 Ghz (Python)
50 MDA 5.64 % 7.22 % 1.2 px 1.4 px 0.32s 1 core @ 2.5 Ghz (Python)
51 DVANet 5.68 % 7.48 % 1.2 px 1.3 px 0.1 s NVIDIA 3090 (PyTorch)
52 AutoDispNet-CSS code 5.69 % 6.68 % 1.0 px 1.1 px 0.9 s 1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity Estimation with AutoML. The IEEE International Conference on Computer Vision (ICCV) 2019.
53 PSMNet+CBAM 5.81 % 7.56 % 1.2 px 1.3 px 0.36 s NVIDIA RTX 3090 (Python)
54 URDAD 5.81 % 7.27 % 1.5 px 1.6 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
55 UCFNet code 5.83 % 7.12 % 1.1 px 1.2 px 0.21 s 1 core @ 2.5 Ghz (C/C++)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
56 SCVFormer 5.83 % 7.42 % 1.4 px 1.6 px 0.09 s NVIDIA RTX 3090 (PyTorch)
57 PFSMNet code 5.83 % 7.39 % 1.2 px 1.3 px 0.31 s 1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2021.
58 EdgeStereo-V2 5.84 % 7.51 % 1.0 px 1.2 px 0.32 s Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task learning network for stereo matching and edge detection. International Journal of Computer Vision (IJCV) 2019.
59 HITNet code 5.91 % 7.54 % 1.0 px 1.2 px 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo Matching. CVPR 2021.
60 ADPNet 5.93 % 7.74 % 1.3 px 1.5 px 0.06 s 1 core @ 2.5 Ghz (C/C++)
61 CFNet code 5.96 % 7.29 % 1.2 px 1.3 px 0.18 s 1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo- Label for Robust Stereo Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2023.
62 HCRNet 6.01 % 7.68 % 1.2 px 1.3 px 0.19 s GPU @ 2.5 Ghz (Python)
63 LaC+GANet code 6.02 % 7.34 % 1.3 px 1.5 px 1.8 s 1 core @ 2.5 Ghz (C/C++)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
64 taugr1215 6.05 % 7.76 % 1.2 px 1.3 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
65 DPCTF-S 6.12 % 7.81 % 1.2 px 1.4 px 0.11 s GPU @ 2.5 Ghz (Python)
Y. Deng, J. Xiao, S. Zhou and J. Feng: Detail Preserving Coarse-to-Fine Matching for Stereo Matching and Optical Flow. IEEE Transactions on Image Processing 2021.
66 ProNet 6.15 % 7.72 % 1.2 px 1.4 px 0.33 s GPU @ 2.5 Ghz (Python)
67 NLCA-Net v2 code 6.17 % 7.65 % 1.2 px 1.3 px 0.67 s GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in Stereo Matching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS .
68 TBFE-Net 6.19 % 7.80 % 1.3 px 1.4 px 0.3 s 1 core @ 2.5 Ghz (Python)
69 GANet-deep code 6.22 % 7.92 % 1.2 px 1.3 px 1.8 s GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
70 taugr12 6.25 % 8.02 % 1.2 px 1.3 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
71 LaC+GwcNet code 6.26 % 8.02 % 1.5 px 1.7 px 0.65 s GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self- Reassembling for Deep Stereo Matching Networks. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
72 GINet 6.26 % 7.91 % 1.3 px 1.4 px 0.25 s 2 cores @ 2.5 Ghz (Python)
73 CREStereo code 6.27 % 7.27 % 1.4 px 1.4 px 0.40 s GPU @ >3.5 Ghz (C/C++)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. 2022.
74 VCNet 6.31 % 7.67 % 1.4 px 1.5 px 0.6 s 1 core @ 2.5 Ghz (Python)
ERROR: Wrong syntax in BIBTEX file.
75 pcanet code 6.33 % 8.50 % 1.4 px 1.6 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
76 NMRF-Stereo 6.35 % 8.11 % 1.4 px 1.6 px 0.09 s NVIDIA RTX 3090 (PyTorch)
77 SegStereo code 6.35 % 8.06 % 1.1 px 1.3 px 0.6 s Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic Information for Disparity Estimation. ECCV 2018.
78 FusionStereo 6.39 % 8.10 % 1.2 px 1.3 px 16 s 1 core @ 2.5 Ghz (Python)
79 CAL-Net 6.40 % 8.17 % 1.5 px 1.7 px 0.44 s 4 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for Stereo Matching. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11, 2021 2021.
80 BGNet+ 6.44 % 8.41 % 1.2 px 1.4 px 0.02 s GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching Network. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
81 OptStereo 6.46 % 8.12 % 1.3 px 1.4 px 0.10 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
82 PDSNet 6.50 % 8.70 % 1.4 px 1.6 px 0.5 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. Proceedings of the international conference on Neural Information Processing Systems (NIPS) 2018.
83 AMNet 6.55 % 8.16 % 1.2 px 1.3 px 0.9 s GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo Disparity Estimation Networks. 2019.
84 DANet-Stereo 6.59 % 8.18 % 1.3 px 1.5 px 2.7 s GPU @ 2.5 Ghz (Python)
85 SCV-Stereo code 6.59 % 8.34 % 1.2 px 1.4 px 0.08 s GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo matching from a sparse cost volume. 2021 IEEE International Conference on Image Processing (ICIP) 2021.
86 DMCNet 6.62 % 8.45 % 1.3 px 1.4 px 0.27 s GPU @ 2.5 Ghz (Python)
87 ERSCNet 6.63 % 9.04 % 1.2 px 1.4 px 0.28 s GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
88 PGNet 6.67 % 8.54 % 1.3 px 1.5 px 0.7 s 1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo matching. Neurocomputing 2021.
89 Abc-Net 6.80 % 8.40 % 1.4 px 1.5 px 0.72 s 4 cores @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local attention network for stereo matching. The Visual Computer 2021.
90 CoEx code 6.83 % 8.63 % 1.3 px 1.4 px 0.027 s RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
91 NLCA-Net-3 code 6.85 % 8.19 % 1.2 px 1.4 px 0.44 s GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
92 UAIStereo 6.90 % 8.63 % 1.3 px 1.4 px 0.06 s GPU @ 3.5 Ghz (Python)
93 GCGANet-V1 6.92 % 8.31 % 1.3 px 1.5 px 0.15 s 1 core @ 2.5 Ghz (C/C++)
94 AcfNet code 6.93 % 8.52 % 1.8 px 1.9 px 0.48 s 1 core @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching. AAAI 2020.
95 SASNet 6.98 % 8.83 % 1.3 px 1.5 px 0.21 s GPU @ >3.5 Ghz (Python)
96 IEG-Net 7.01 % 8.85 % 1.2 px 1.4 px 0.40 s 1 core @ 2.5 Ghz (Python)
97 AAG 7.01 % 8.85 % 1.2 px 1.4 px 1.2 s 1 core @ 2.5 Ghz (C/C++)
98 SGNet 7.02 % 8.89 % 1.4 px 1.5 px 0.6 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo Matching. Proceedings of the Asian Conference on Computer Vision (ACCV) 2020.
99 ACVNet code 7.03 % 8.67 % 1.4 px 1.5 px 0.2 s NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for Accurate and Efficient Stereo Matching. CVPR 2022.
100 ICGNet-gwc 7.07 % 8.85 % 1.3 px 1.4 px 0.32 s GPU @ 2.5 Ghz (Python)
101 NLCA-Net code 7.20 % 9.00 % 1.3 px 1.4 px 0.6 s GPU @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention network for stereo matching. APSIPA Transactions on Signal and Information Processing 2020.
102 AANet+ code 7.22 % 9.10 % 1.3 px 1.4 px 0.06 s NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
103 GDANet 7.29 % 9.15 % 1.5 px 1.7 px 0.04 s 1 core @ 2.5 Ghz (Python)
104 ASNet 7.32 % 9.15 % 1.5 px 1.7 px 0.17 s GPU @ >3.5 Ghz (Python)
105 GASN 7.33 % 9.35 % 1.3 px 1.5 px 0.09 s NVIDIA RTX 3090 (PyTorch)
106 HSM code 7.38 % 9.40 % 1.3 px 1.6 px 0.15 s Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on High- Resolution Images. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
107 W-Stereo-a-r 7.39 % 9.24 % 1.4 px 1.5 px 0.07 s 1 core @ 2.5 Ghz (Python)
108 iResNet-i2 code 7.40 % 9.09 % 1.2 px 1.3 px 0.12 s 1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou and J. Zhang: Learning for disparity estimation through feature constancy. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018.
109 yjlig 7.48 % 9.37 % 1.3 px 1.5 px 0.35 s 1 core @ 2.5 Ghz (C/C++)
110 EAC-Stereo code 7.48 % 9.37 % 1.3 px 1.5 px 0.38s 1 core @ 2.5 Ghz (Python)
111 AFNet 7.50 % 9.04 % 1.3 px 1.4 px 0.25 s 1 core @ 2.5 Ghz (Python)
112 CFP-Net code 7.52 % 9.58 % 1.4 px 1.6 px 0.95 s 8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching. arXiv preprint 2019.
113 SSPCVNet 7.56 % 9.43 % 1.5 px 1.7 px 0.9 s 1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost Volumes. The IEEE International Conference on Computer Vision (ICCV) 2019.
114 MABNet_origin code 7.57 % 9.07 % 1.3 px 1.4 px 0.38 s Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
115 PASNet 7.75 % 9.22 % 1.4 px 1.5 px 0.38 s GPU @ 3.5 Ghz (Python)
116 GwcNet-gc code 7.80 % 9.28 % 1.3 px 1.4 px 0.32 s GPU @ 2.0 Ghz (Java + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network. CVPR 2019.
117 FADNet code 7.85 % 9.17 % 1.2 px 1.3 px 0.05 s Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network for Disparity Estimation. arXiv preprint arXiv:2003.10758 2020.
118 GANet-15 code 7.87 % 9.85 % 1.3 px 1.5 px 0.36 s 1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
119 PSMNet code 8.36 % 10.18 % 1.4 px 1.6 px 0.41 s Nvidia Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network. arXiv preprint arXiv:1803.08669 2018.
120 Displets code 8.40 % 9.89 % 1.9 px 2.3 px 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
121 WSMCnet code 8.50 % 10.27 % 2.1 px 2.3 px 0.39 s GPU @ Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network. Acta Optica Sinica 2019.
122 PVStereo 8.54 % 9.96 % 2.2 px 2.3 px 0.10 s 1 core @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for end-to-end self-supervised stereo matching. IEEE Robotics and Automation Letters 2021.
123 Fast DS-CS code 8.88 % 10.40 % 1.3 px 1.5 px 0.02 s GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional Processing of Cost Signatures. WACV 2020 (to appear).
124 GAANet 8.98 % 11.01 % 1.8 px 2.0 px 0.08 2080tiGPU @ 2.5 Ghz (Python)
125 Displets v2 code 8.99 % 10.41 % 2.0 px 2.2 px 265 s >8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
126 MSDC-Net 9.16 % 11.27 % 1.8 px 2.0 px 0.6 s 1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: MSDC-Net: Multi-Scale Dense and Contextual Networks for Stereo Matching. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2019.
127 MMStereo 9.27 % 11.17 % 1.6 px 1.7 px 0.04 s Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for Robotic Manipulation in Homes. .
128 DualNet-kd 9.40 % 11.25 % 1.7 px 1.9 px 0.3 s 1 core @ 2.5 Ghz (C/C++)
129 RTSnet code 9.54 % 11.49 % 1.7 px 1.9 px 0.02 s 1 core @ 2.5 Ghz (Python)
H. Lee and Y. Shin: Real-Time Stereo Matching Network with High Accuracy. 2019 IEEE International Conference on Image Processing (ICIP) 2019.
130 WaveletStereo 9.84 % 12.17 % 1.7 px 1.9 px 0.27 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients for stereo matching. arXiv: Computer Vision and Pattern Recognition 2019.
131 AANet code 10.51 % 11.97 % 1.7 px 1.8 px 0.06 s GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network for Efficient Stereo Matching. CVPR 2020.
132 GC-NET 10.80 % 12.80 % 1.8 px 2.0 px 0.9 s Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for Deep Stereo Regression. Proceedings of the International Conference on Computer Vision (ICCV) 2017.
133 MDTE4 11.13 % 13.31 % 2.2 px 2.4 px 0.03 s 1 core @ 2.5 Ghz (C/C++)
134 VC-SF
This method uses optical flow information.
This method makes use of multiple (>2) views.
11.58 % 12.29 % 2.7 px 2.8 px 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, S. Roth and K. Schindler: View-Consistent 3D Scene Flow Estimation over Multiple Frames. Proceedings of European Conference on Computer Vision. Lecture Notes in, Computer Science 2014.
135 PRSM
This method uses optical flow information.
This method makes use of multiple (>2) views.
code 11.91 % 12.87 % 2.0 px 2.1 px 300 s 1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a Piecewise Rigid Scene Model. ijcv 2015.
136 TSNnet_Teacher 12.06 % 14.38 % 2.5 px 2.9 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
137 OSF
This method uses optical flow information.
code 12.18 % 15.35 % 2.1 px 2.6 px 50 min 1 core @ 3.0 Ghz (Matlab + C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
138 TSNnet_naive 13.95 % 16.67 % 2.3 px 2.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
139 SsSMnet 14.02 % 16.59 % 3.1 px 3.6 px 0.8 s Titan Xp
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo Matching with Self-Improving Ability. arXiv:1709.00930 2017.
140 JSOSM 14.16 % 16.89 % 2.4 px 2.8 px 105 s 8 cores @ 2.5 Ghz (C/C++)
X. Li and J. Liu: EFFICIENT STEREO MATCHING USING SEGMENT OPTIMIZATION. ICIP 2016.
141 RecResNet code 14.25 % 17.32 % 2.1 px 2.5 px 0.3 s GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement. In International Conference on 3D Vision (3DV) 2018.
142 PCBP-SS 14.26 % 18.33 % 2.4 px 3.9 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
143 TSNnet_student 14.33 % 17.03 % 3.1 px 3.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
144 FD-Fusion code 14.64 % 17.15 % 2.6 px 2.9 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations. International Conference on 3D Vision (3DV) 2019.
145 SPS-StFl
This method uses optical flow information.
This method makes use of the epipolar geometry.
14.74 % 18.00 % 2.9 px 3.6 px 35 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
146 CoR code 15.30 % 19.15 % 2.7 px 4.1 px 6 s 6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial Hierarchy of Regions. CVPR 2015.
147 cfusion
This method makes use of multiple (>2) views.
code 15.31 % 16.20 % 2.6 px 2.8 px 70 s GPU (Matlab + CUDA)
V. Ntouskos and F. Pirri: Confidence driven TGV fusion. arXiv preprint arXiv:1603.09302 2016.
148 SGM-Net 15.31 % 18.97 % 3.0 px 3.8 px 67 s Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural Networks. CVPR 2017.
149 P3SNet+ code 15.85 % 18.50 % 2.1 px 2.4 px 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
150 L-ResMatch code 15.94 % 19.71 % 3.7 px 5.2 px 48 s Titan X (Torch7, CUDA)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway Networks and Reflective Loss. arXiv preprint arxiv:1701.00165 2016.
151 DispNetC code 16.04 % 18.15 % 2.1 px 2.3 px 0.06 s Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. CVPR 2016.
152 SPS-St code 16.05 % 19.34 % 3.1 px 3.6 px 2 s 1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation. ECCV 2014.
153 CNNF+SGM 16.22 % 19.87 % 2.9 px 3.9 px 71 s TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New Features for Effective Dense Matching. IEEE Transactions on Image Processing 2018.
154 DDS-SS 16.23 % 19.39 % 2.5 px 3.0 px 1 min 1 core @ 2.5 Ghz (Matlab + C/C++)
D. Wei, C. Liu and W. Freeman: A Data-driven Regularization Model for Stereo and Flow. 3DTV-Conference, 2014 International Conference on 2014.
155 PCBP 16.28 % 20.22 % 2.8 px 4.4 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun: Continuous Markov Random Fields for Robust Stereo Estimation. ECCV 2012.
156 MABNet_tiny code 16.50 % 18.83 % 2.5 px 2.8 px 0.11 s 1 core @ 2.5 Ghz (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network Based on Multibranch Adjustable Bottleneck Module. .
157 PBCP 16.78 % 20.29 % 3.1 px 4.2 px 68 s Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for Dense Disparity Map. British Machine Vision Conference (BMVC) 2016.
158 MC-CNN-acrt code 17.09 % 20.70 % 3.2 px 4.1 px 67 s Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches. Submitted to JMLR .
159 CBMV code 17.10 % 20.70 % 3.7 px 4.4 px 250 s 6 cores@3.0Ghz(Python,C/C++,CUDA TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation. 2018.
160 Deep Embed 17.14 % 20.78 % 2.8 px 3.8 px 3 s 1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence Embedding Model for Stereo Matching Costs. ICCV 2015.
161 SMCM 17.46 % 21.74 % 2.8 px 4.8 px 1800 s Nvidia GTX 1080 (Caffe)
M. Yang, Y. Liu, Y. Cai and Z. You: Stereo matching based on classification of materials. Neurocomputing 2016.
162 P3SNet code 17.48 % 20.35 % 2.3 px 2.8 px 0.01 s GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo Network. IEEE Transactions on Intelligent Transportation Systems 2023.
163 MC-CNN-WS code 17.70 % 21.54 % 3.1 px 3.8 px 1.35 s 1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep metrics for stereo reconstruction. ICCV 2017.
164 PR-Sf+E
This method uses optical flow information.
17.85 % 20.82 % 3.3 px 4.0 px 200 s 4 cores @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
165 StereoSLIC 18.22 % 21.60 % 2.8 px 3.6 px 2.3 s 1 core @ 3.0 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation. CVPR 2013.
166 MC-CNN 18.45 % 21.96 % 3.5 px 4.3 px 100 s Nvidia GTX Titan (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a Convolutional Neural Network. Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
167 Content-CNN 18.81 % 22.38 % 3.6 px 4.2 px 0.7 s Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching. CVPR 2016.
168 pSGM 18.87 % 22.87 % 3.3 px 5.7 px 7.92 s 4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal Matching. IEEE Signal Processing Letters 2018.
169 PR-Sceneflow
This method uses optical flow information.
19.22 % 22.07 % 3.3 px 4.0 px 150 sec 4 core @ 3.0 Ghz (Matlab - C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow. International Conference on Computer Vision (ICCV) 2013.
170 TCD-CRF 19.22 % 23.53 % 3.3 px 6.6 px 60 s 4 cores @ 3.5 Ghz (C/C++)
S. Arjomand Bigdeli, G. Budweiser and M. Zwicker: Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering. Proc. ACPR 2015.
171 CoR-Conf code 19.38 % 23.00 % 4.0 px 5.4 px 6 s 6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial Hierarchy of Regions. CVPR 2015.
172 DLP 19.67 % 23.72 % 3.2 px 5.9 px 60 s 8 cores @ >3.5 Ghz (C/C++)
V. Nguyen, H. Nguyen and J. Jeon: Robust Stereo Data Cost With a Learning Strategy. IEEE Transactions on Intelligent Transportation Systems 2017.
173 CRD-Fusion code 19.84 % 22.68 % 2.9 px 3.5 px 0.02 s GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion. Conference on Robots and Vision 2022.
174 MBM 20.37 % 23.63 % 3.6 px 4.3 px 0.2 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo. IV 2015.
175 SepStereo 20.91 % 23.24 % 3.2 px 3.6 px 0.087s GPU @ 2.0 Ghz (Pyhton)
176 UHP 21.28 % 24.34 % 2.9 px 3.7 px 0.02 s GPU @ 2.5 Ghz (Python)
177 AAFS+ 21.32 % 23.51 % 3.0 px 3.2 px 0.01 s 1 core @ 2.5 Ghz (Python)
178 Flow2Stereo 21.35 % 23.51 % 2.8 px 3.1 px 0.05 s GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised Learning of Optical Flow and Stereo Matching. CVPR 2020.
179 SGM-post 21.71 % 24.70 % 3.3 px 3.8 px 5 s 4 cores @ 2.5 Ghz (C/C++)
Z. Zhong: Efficient Learning based Semi-Global Stereo Matching. 2015 submitted.
180 CAT 21.72 % 24.88 % 3.3 px 4.3 px 10 s 1 core @ 3.5 Ghz (C/C++)
J. Ha, J. Jeon, G. Bae, S. Jo and H. Jeong: Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence. Advances in Visual Computing 2014.
181 CSPMS 22.41 % 26.24 % 4.5 px 6.0 px 6 s 4 cores @ 2.5 Ghz (C/C++)
J. Cho and M. Humenberger: Fast PatchMatch Stereo Matching Using Multi-Scale Cost Fusion for Automotive Applications. IV 2015.
182 ITGV 22.43 % 26.01 % 4.9 px 5.8 px 7 s 1 core @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, S. Gehrig, T. Pock and H. Bischof: Pushing the Limits of Stereo Using Variational Stereo Estimation. IV 2012.
183 RBM 22.51 % 25.39 % 3.6 px 4.0 px 0.2 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.
184 ATGV 22.85 % 26.81 % 3.3 px 5.3 px 6 min >8 cores @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, T. Pock and H. Bischof: Minimizing TGV-based Variational Models with Non-Convex Data terms. ICSSVM 2013.
185 AARBM 22.86 % 25.76 % 3.7 px 4.2 px 0.25 s 1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption. IV 2014.
186 PASMNet_192 code 23.02 % 26.94 % 4.5 px 5.7 px 0.06 s GPU @ 2.5 Ghz (Python)
187 SNCC 23.03 % 25.94 % 3.7 px 4.2 px 0.11 s 1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation. DICTA 2010.
188 Ensemble 23.04 % 26.70 % 4.5 px 6.9 px 135 s 2 cores @ >3.5 Ghz (Matlab)
A. Spyropoulos and P. Mordohai: Ensemble Classifier for Combining Stereo Matching Algorithms. International Conference on 3D Vision (3DV) 2015.
189 AABM 23.33 % 26.25 % 3.8 px 4.4 px 0.12 s 1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces. IV 2013.
190 ALTGV 23.47 % 26.85 % 3.4 px 4.2 px 20 s GPU @ 2.5 Ghz (C/C++)
G. Kuschk and D. Cremers: Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods. ICCV Workshop on Big Data in 3D Computer Vision 2013.
191 ARW code 24.54 % 28.29 % 5.2 px 6.8 px 4.6s 1 core @ 3.5 Ghz (MATLAB+C/C++)
S. Lee, J. Lee, J. Lim and I. Suh: Robust Stereo Matching using Adaptive Random Walk with Restart Algorithm. Image and vision computing (accepted) 2015.
192 iSGM 24.67 % 28.86 % 4.7 px 8.6 px 8 s 2 cores @ 2.5 Ghz (C/C++)
S. Hermann and R. Klette: Iterative Semi-Global Matching for Robust Driver Assistance Systems. ACCV 2012.
193 AAFS 24.86 % 27.26 % 3.3 px 3.8 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices. Proceedings of the Asian Conference on Computer Vision 2020.
194 mSGM-LDE 24.97 % 29.33 % 5.5 px 9.3 px 55 s 2 cores @ 2.5 Ghz (C/C++)
V. Nguyen, D. Nguyen, S. Lee and J. Jeon: Local Density Encoding for Robust Stereo Matching. TCSVT 2014.
195 DispSegNet 25.00 % 27.94 % 3.7 px 4.2 px 0.9 s GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End- to-End Learning of Disparity Estimation From Stereo Imagery. IEEE Robotics and Automation Letters 2019.
196 wSGM 25.99 % 29.17 % 8.0 px 9.0 px 6s 1 core @ 3.5 Ghz (C/C++)
R. Spangenberg, T. Langner and R. Rojas: Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance. CAIP 2013.
197 ELAS code 26.75 % 30.41 % 5.4 px 6.3 px 0.3 s 1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching. ACCV 2010.
198 Permutation Stereo 26.86 % 29.87 % 5.0 px 5.8 px 30 s GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self- Supervised Stereo Matching Problem. 2022 19th Conference on Robots and Vision (CRV) 2022.
199 S+GF (Cen) code 27.10 % 31.36 % 5.6 px 10.1 px 140 s 1 core @ 3.0 Ghz (C/C++)
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
200 SGM 27.39 % 30.31 % 5.1 px 5.8 px 3.7 s 1 core @ 3.0 Ghz (C/C++)
H. Hirschmueller: Stereo Processing by Semi-Global Matching and Mutual Information. PAMI 2008.
201 rSGM code 27.46 % 30.98 % 6.7 px 7.9 px 0.2 s 4 cores @ 2.6 Ghz (C/C++)
R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas: Large Scale Semi-Global Matching on the CPU. IV 2014.
202 linBP 27.77 % 31.94 % 5.9 px 9.6 px 1.6 min 1 core @ 3.0 Ghz (C/C++)
W. Khan, V. Suaste, D. Caudillo and R. Klette: Belief Propagation Stereo Matching Compared to iSGM on Binocular or Trinocular Video Data. IV 2013.
203 SSMW 27.84 % 30.96 % 5.2 px 6.2 px 2.5 min 8 cores @ 2.5 Ghz (C/C++)
X. Li, J. Liu, G. Chen and H. Fu: Efficient Methods Using Slanted Support Windows for Slanted Surfaces. IET Computer Vision, http://ietdl.org/t/5QsTxb 2016.
204 Toast2
This method uses stereo information.
27.85 % 30.88 % 5.0 px 5.7 px 0.03 s 4 cores @ 3.5 Ghz (C/C++)
B. Ranft and T. Strau\ss: Modeling Arbitrarily Oriented Slanted Planes for Efficient Stereo Vision based on Block Matching. Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on 2014.
205 OASM-Net 28.28 % 32.45 % 4.6 px 7.3 px 0.73 s GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning. Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
206 HSMA 28.76 % 32.90 % 5.6 px 9.3 px 44s 1 core @ 3.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: A hierarchical stereo matching algorithm based on adaptive support region aggregation method. Pattern Recognition Letters 2018.
207 LAMC-DSΜ 29.18 % 32.73 % 5.1 px 8.0 px 10.8 min 2 cores @ 2.5 Ghz (Matlab)
C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa and G. Karras: A local adaptive approach for dense stereo matching in architectural scene reconstruction. ISPRS 2013.
208 GF (Census) code 30.81 % 34.85 % 8.8 px 12.9 px 120 s 1 core @ 3.0 Ghz (C/C++)
A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. TPAMI 2013.
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
209 Deep-Raw 31.55 % 35.52 % 9.8 px 13.2 px 1 s 1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence Embedding Model for Stereo Matching Costs. ICCV 2015.
210 BSM code 32.50 % 35.96 % 7.5 px 10.3 px 2.5 min 1 core @ 3.0 Ghz (C/C++)
K. Zhang, J. Li, Y. Li, W. Hu, L. Sun and S. Yang: Binary stereo matching. Pattern Recognition (ICPR), 2012 21st International Conference on 2012.
211 ADSM 32.69 % 35.60 % 8.4 px 10.6 px 125 s 1 core @ 2.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: Accurate dense stereo matching for road scenes. 2017 IEEE International Conference on Image Processing, ICIP 2017, Beijing, China, September 17-20, 2017 .
212 IIW 33.04 % 36.39 % 8.5 px 11.7 px 5.5 s 1 core @ 2.5 Ghz (C/C++)
A. Murarka and N. Einecke: A meta-technique for increasing density of local stereo methods through iterative interpolation and warping. Canadian Conference on Computer and Robot Vision 2014.
213 GLDS code 33.15 % 36.36 % 5.8 px 7.5 px 26 s GPU @ 1.5 Ghz (C/C++)
K. Oguri and Y. Shibata: A new stereo formulation not using pixel and disparity models. 2018.
214 SymST-GP 33.68 % 37.24 % 12.1 px 15.2 px 0.254 s Dual - Nvidia GTX Titan (CUDA)
R. Ralha, G. Falcao, J. Amaro, V. Mota, M. Antunes, J. Barreto and U. Nunes: Parallel refinement of slanted 3D reconstruction using dense stereo induced from symmetry. Journal of Real-Time Image Processing 2016.
215 SM_GPTM 33.78 % 36.81 % 11.7 px 12.9 px 6.5 s 2 cores @ 2.5 Ghz (C/C++)
C. Cigla and A. Alatan: An Improved Stereo Matching Algorithm with Ground Plane and Temporal Smoothness Constraints. ECCV Workshops 2012.
216 HLSC_mesh 35.58 % 38.92 % 9.0 px 11.3 px 800 s 1 core @ 2.5 Ghz (Matlab + C/C++)
S. Hadfield, K. Lebeda and R. Bowden: Stereo reconstruction using top-down cues. Computer Vision and Image Understanding 2016.
217 CrossCensus 35.97 % 38.80 % 8.0 px 10.1 px 30 s 1 core @ 2.5 Ghz (C/C++)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using Orthogonal Integral Images. Circuits and Systems for Video Technology, IEEE Transactions on 2009.
218 OCV-BM-post code 37.03 % 39.85 % 8.6 px 9.3 px 0.1 s 1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library. Dr. Dobb's Journal of Software Tools 2000.
219 GCSF
This method uses optical flow information.
code 37.08 % 39.53 % 5.9 px 6.7 px 2.4 s 1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by Growing Correspondence Seeds. CVPR 2011.
220 SDM code 37.23 % 39.63 % 7.7 px 8.6 px 1 min 1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis in complex scenes. BMVC 2003.
221 OCV-SGBM code 37.45 % 40.21 % 13.1 px 14.0 px 1.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching and mutual information. PAMI 2008.
222 MSMW
This method uses stereo information.
code 37.60 % 39.98 % 9.3 px 10.0 px 3 min 4 cores @ 2.5 Ghz (C/C++)
A. Buades and G. Facciolo: On the performance of local methods for stereovision. 2013 submitted.
223 GCS code 37.63 % 40.05 % 6.2 px 7.0 px 2.2 s 1 core @ 2.5 Ghz (C/C++)
J. Cech and R. Sara: Efficient Sampling of Disparity Space for Fast And Accurate Matching. BenCOS 2007.
224 CostFilter code 39.41 % 41.95 % 11.8 px 13.5 px 4 min 1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual Correspondence and Beyond. CVPR 2011.
225 VariableCros 42.39 % 45.26 % 13.8 px 16.1 px 30 s 1 core @ 2.5 Ghz (Matlab)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using Orthogonal Integral Images. Circuits and Systems for Video Technology, IEEE Transactions on 2009.
226 GC+occ code 46.25 % 48.96 % 14.9 px 17.6 px 6 min 1 core @ 2.5 Ghz (C/C++)
V. Kolmogorov and R. Zabih: Computing Visual Correspondence with Occlusions using Graph Cuts. ICCV 2001.
227 ALE-Stereo code 83.80 % 84.37 % 24.6 px 25.4 px 50 min 1 core @ 3.0 Ghz (C/C++)
L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin and P. Torr: Joint Optimisation for Object Class Segmentation and Dense Stereo Reconstruction. BMVC 2010.
228 AVERAGE 88.11 % 88.80 % 26.2 px 28.2 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
229 MEDIAN 90.79 % 91.33 % 29.6 px 31.5 px 0.01 s 1 core @ 2.5 Ghz (C/C++)
This table as LaTeX


Related Datasets

  • HCI/Bosch Robust Vision Challenge: Optical flow and stereo vision challenge on high resolution imagery recorded at a high frame rate under diverse weather conditions (e.g., sunny, cloudy, rainy). The Robert Bosch AG provides a prize for the best performing method.
  • Image Sequence Analysis Test Site (EISATS): Synthetic image sequences with ground truth information provided by UoA and Daimler AG. Some of the images come with 3D range sensor information.
  • Middlebury Stereo Evaluation: The classic stereo evaluation benchmark, featuring four test images in version 2 of the benchmark, with very accurate ground truth from a structured light system. 38 image pairs are provided in total.
  • Daimler Stereo Dataset: Stereo bad weather highway scenes with partial ground truth for freespace
  • Make3D Range Image Data: Images with small-resolution ground truth used to learn and evaluate depth from single monocular images.
  • Lubor Ladicky's Stereo Dataset: Stereo Images with manually labeled ground truth based on polygonal areas.

Citation

When using this dataset in your research, we will be happy if you cite us:
@INPROCEEDINGS{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker